Carnegie Mellon University

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Yi Hu¹, Chaoran Zhang¹, Edward Andert², Hashul Singh¹, Aviral Shrivastava², James Laudon³, Yanqi Zhou³, Bob Iannucci³, Carlee Joe-Wong¹

¹Department of Electrical and Computer Engineering, CMU

²School of Computing and Augmented Intelligence, ASU

³Google

Overview

- Placement in Heterogeneous Computing
 - Motivation
 - Problem Formulation
- Related Work
- GiPH
- Evaluation
- Conclusion

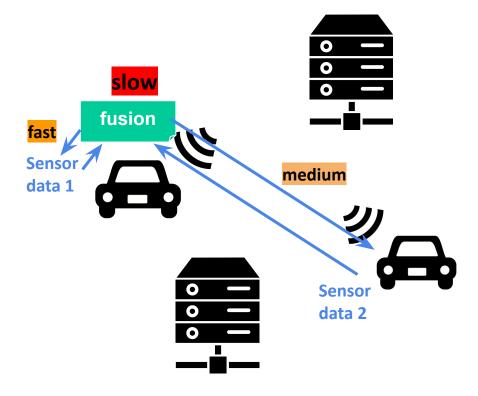
Motivation

Highly distributed, hundreds of nodes: <u>LATENCY</u>

- Time-sensitive data processing
- Precise timing requirements
- Eg., light-free traffic control

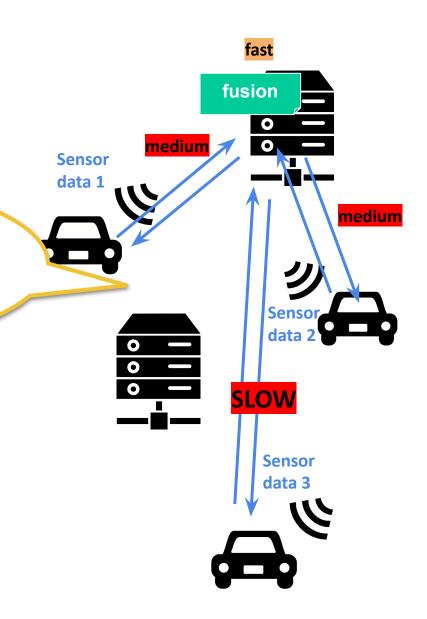
Source: 'Rush Hour' by Black Sheep Films

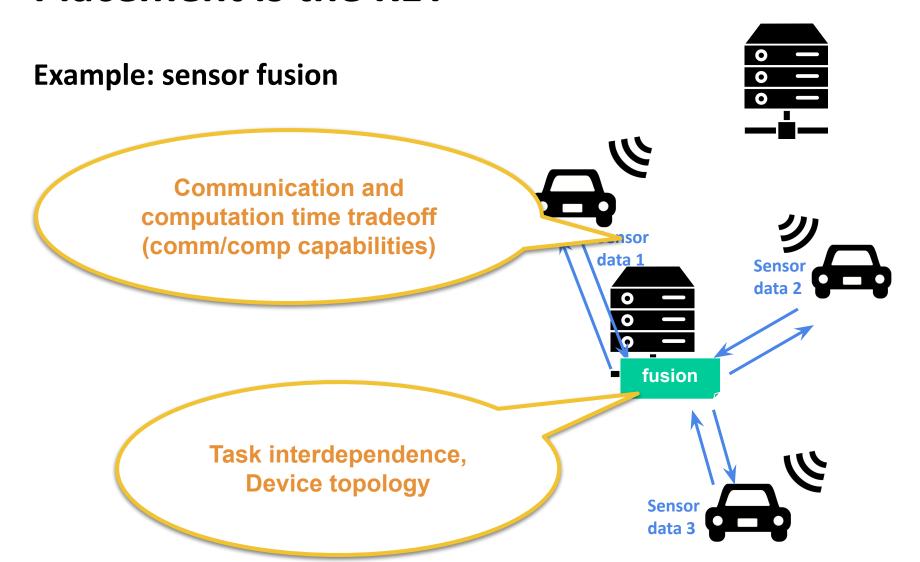
Example: sensor fusion



Example: sensor fusion

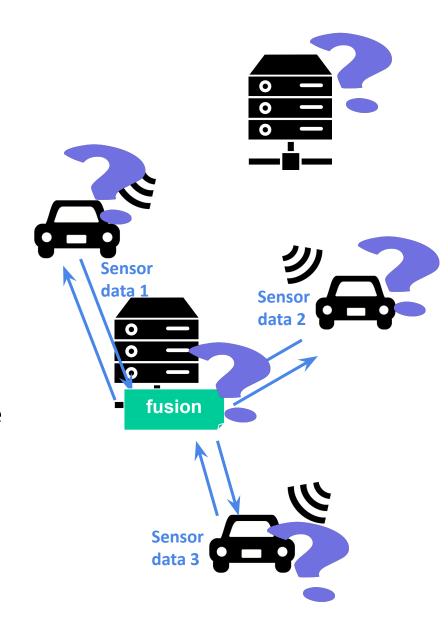
Communication and computation time tradeoff (comm/comp capabilities)





Challenges:

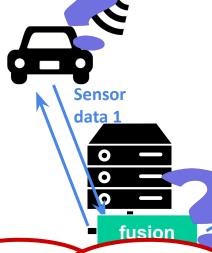
- Devices are <u>heterogeneous</u>
 - Different types:
 - CPUs/GPUs
 - PCs/Servers/UEs
 - Various compute/communication capabilities - tradeoff
 - Functionalities
- Devices can be <u>volatile</u>
 - Some device becomes unavailable
 - New device enters the system



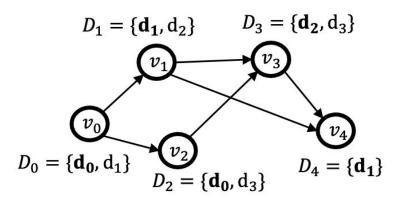
Challenges:

- Devices are <u>heterogeneous</u>
 - Different types:
 - CPUs/GPUs
 - PCs/Servers/UEs
 - Various compute/communication capabilities tradeoff
 - Functionalities
- Devices can be <u>volatile</u>
 - Some device becomes unavailable
 - Nev

Require a solution that can scale to different number of devices and can efficiently encode information as the device set changes.

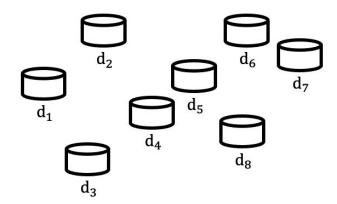


Placement Problem



A compute application G (DAG)

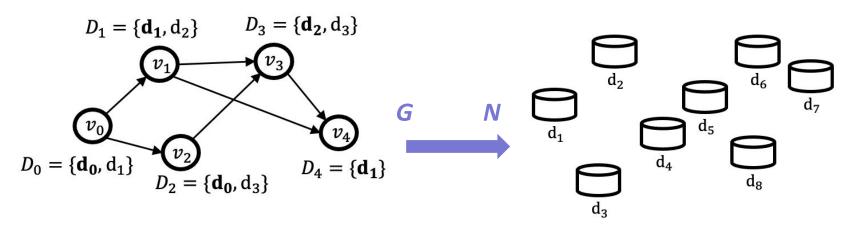
The set of tasks V with placement constraints $D_i \subseteq D$



A target computing network N

The set of devices D

Placement Problem



A compute application G (DAG)

The set of tasks V with placement constraints $D_i \subseteq D$

A target computing network N

The set of devices D

Placement
$$\mathcal{M}^{G \to N}: V \to D$$

Objective $\min \rho(\mathcal{M}|G,N)$ s.t $\mathcal{M}(v_i) \in D_i$

Placement: Makespan Minimization

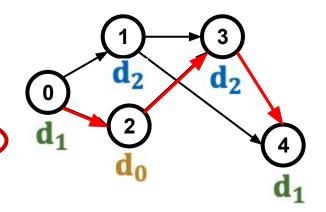
For time-sensitive applications, it is important to minimize the *completion time*, i.e., makespan

 The time duration from the start of the first task's execution to the end of the last task's execution

$$\min_{\mathcal{M}} \rho(\mathcal{M}|G, N) = \min_{\mathcal{M}} \max_{p \in P(G)} \left(\sum_{i \in p} c_i + \sum_{(i,j) \in p} c_{ij} \right)$$

- The total cost along the critical path
- Depends on the placement of all tasks
- NP-hard

Hard to place the whole graph all at once!



Electrical & Computer ENGINEERING

Related Work

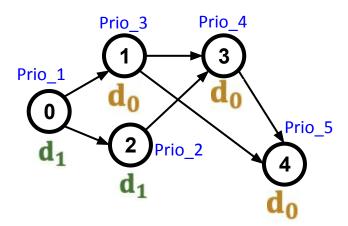
- Scheduling Heuristics in Heterogeneous Computing
- RL-based Device Placement for Neural Network Training

Related Work: Scheduling Heuristics

- Rely on simple strategies and hand-crafted features
- E.g., Heterogeneous Earliest Finish Time (HEFT)[1]
 - Give each task a priority that maintains the topological ordering of the tasks
 - Starting with the highest priority, place each task to a device that will result in the earliest finish time (EFT) of that task

Related Work: Scheduling Heuristics

- Rely on simple strategies and hand-crafted features
- E.g., Heterogeneous Earliest Finish Time (HEFT)[1]
 - Give each task a priority that maintains the topological ordering of the tasks
 - Starting with the highest priority, place each task to a device that will result in the earliest finish time (EFT) of that task

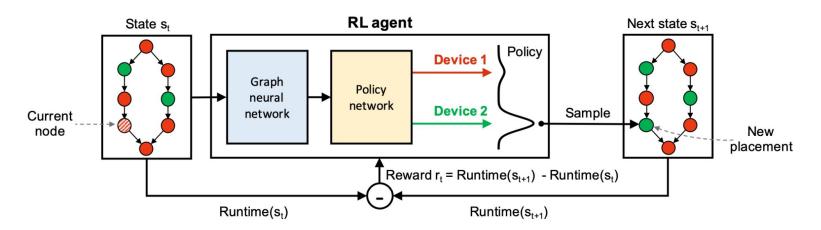


Related Work: RL-based Device Placement

- Predict a placement for each task
- Hierarchical model for device placement (HDP)[2]
 - An RL policy is trained for each graph
 - An RNN-based placer: encoder/decoder pair to predict one device for each node in the order of the inputs
 - Does not generalize to new neural networks/device clusters

Related Work: RL-based Device Placement

- Predict a placement for each task
- Hierarchical model for device placement (HDP)[2]
 - An RL policy is trained for each graph
 - An RNN-based placer: encoder/decoder pair to predict one device for each node in the order of the inputs
 - Does not generalize to new neural networks/device clusters
- Placeto[3]
 - A GNN is used to embed graph-level features
 - Does not generalize to new device clusters



Electrical & Computer ENGINEERING

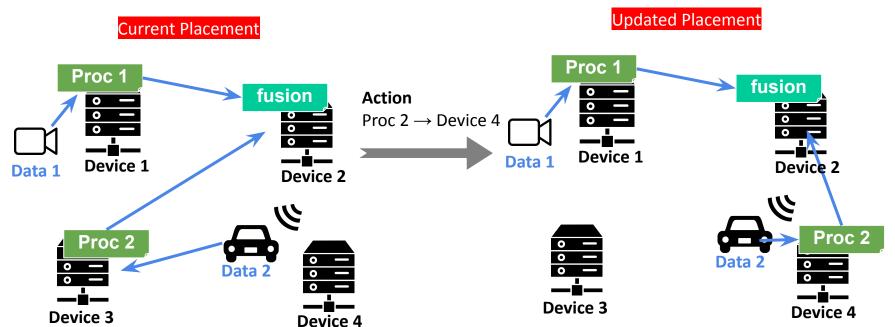
GiPH

- Fully generalizable placement learning
- Adaptive to network changes

MDP Formalism

We formulate the placement problem as a *search problem*, where *incremental changes* are made to the current placement.

■ Current placement → take an action (update the current placement) → transition to a new state → reward (improvement)



MDP Formalism

We formulate the placement problem as a *search problem*, where *incremental changes* are made to the current placement.

State space

set of all feasible placements

Action space $D_0 = \{\mathbf{d_0}, \mathbf{d_1}\}$ $a_0 = (v_0, d_0)$ $a_1 = (v_0, d_1)$ $a_2 = (v_1, d_1)$ $a_3 = (v_1, d_2)$

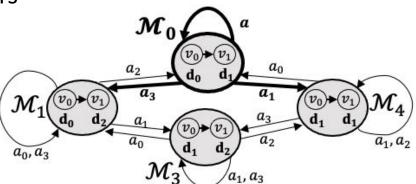
Action space

- set of feasible task and device pairs
- $a_t = (v_i, d_j)$ place v_i on d_j

Reward

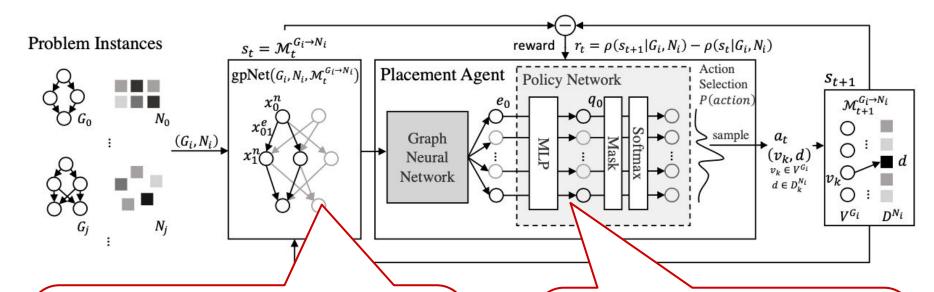
The performance improvement

$$r_t = \rho(s_{t+1}|G, N) - \rho(s_t|G, N)$$



GiPH: Framework

GiPH: Generalizable Placement with the ability to adapt to dynamic Heterogeneous networks



gpNet: a graph representation

- Encode information of an arbitrary task graph and network pair
- Capture all task- and device-related features
- Has a local graph structure corresponding to each possible task relocation

Placement Agent: GNN + policy network

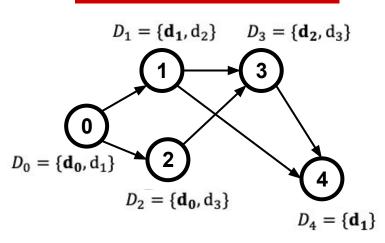
- Take a gpNet as input
- GNN: calculate an embedding for each action
- Policy network: decides an action (i.e., relocating a task) to take

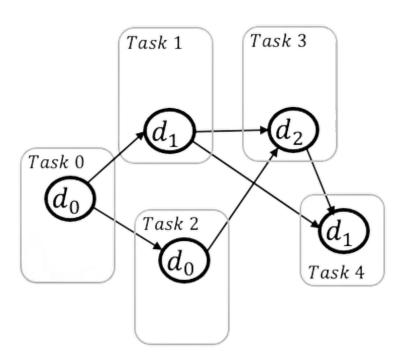
gpNet Representation

An efficient graph representation to encode information

- Each node corresponds to one action
- Local graph structure corresponds to an alternative task placement

Current Placement and Constraints



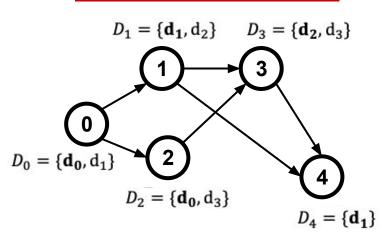


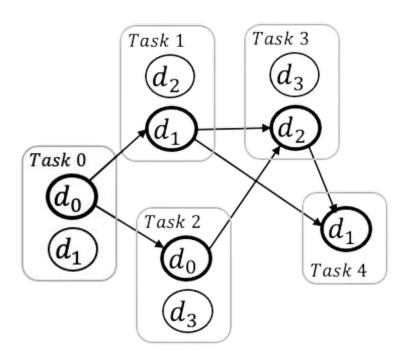
gpNet Representation

An efficient graph representation to encode information

- Each node corresponds to one action
- Local graph structure corresponds to an alternative task placement

Current Placement and Constraints



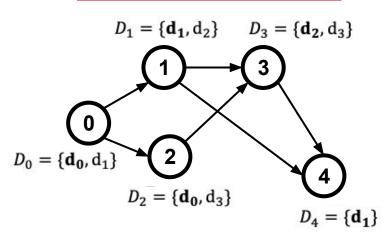


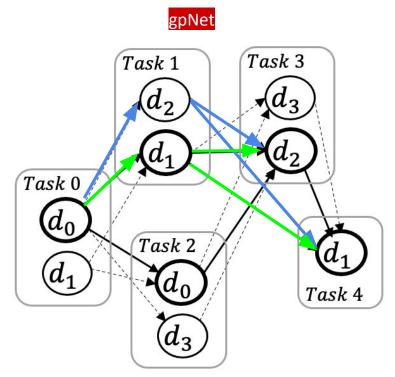
gpNet Representation

An efficient graph representation to encode information

- Each node corresponds to one action
- Local graph structure corresponds to an alternative task placement

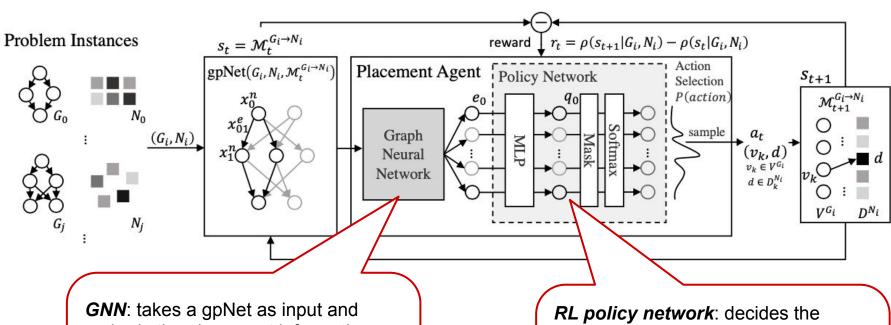
Current Placement and Constraints





GiPH: Neural Network Design

Scalable placement policy: GNN + RL policy network



GNN: takes a gpNet as input and embeds the placement information as a set of vectors

$$e_u = h_2 \left(\sum_{v \in \xi(u)} h_1 ([e_v \parallel x_{vu}^e]) \right) + x_u^n$$

RL policy network: decides the action of re-placing one of the task (placement update step)

- Score function $q_a = g(e_a)$
- Softmax action selection

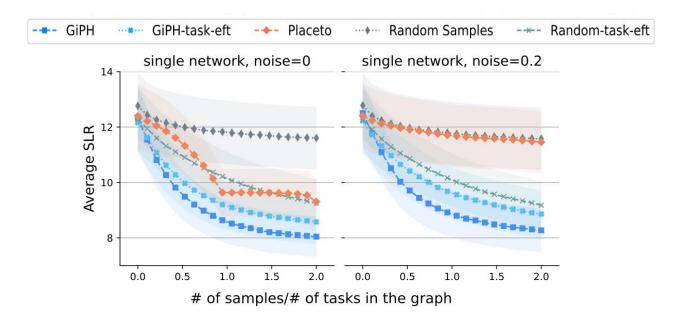
$$\pi(a|s) = \frac{q_a}{\sum_{b \in A} q_b}$$

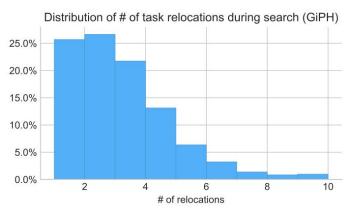
Electrical & Computer ENGINEERING

Evaluation

- Performance: Schedule Length Ratio (normalized makespan) minimization
- Evaluation is done on graphs not in the training dataset
- Case Study: Cooperative Sensor Fusion

Search Efficiency: GiPH vs. Placeto



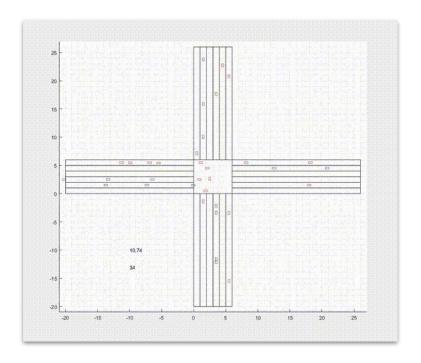


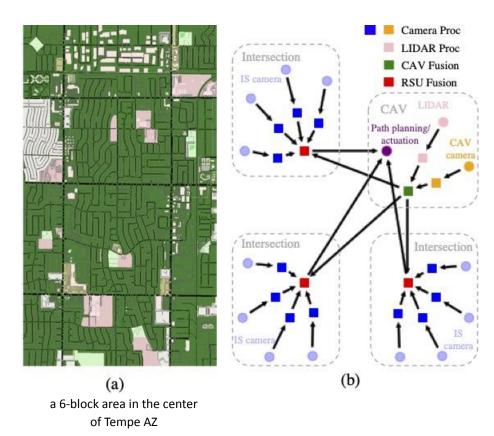
Placeto: visit task equally

GiPH: adjust the placement of "critical" tasks more frequently within the same number of search steps

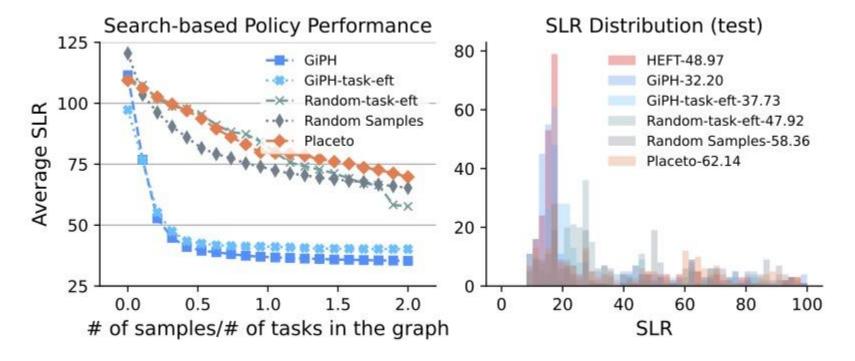
Cooperative Sensor Fusion

- Autonomous driving with roadside units (RSUs), infrastructure camera sensors, and CAVs
- Simulation of Urban MObility (SUMO)





Cooperative Sensor Fusion



 Find <u>better</u> placement (up to 30.5% lower SLR) with <u>higher</u> search efficiency than baselines

Conclusion

- Formulate the learning problem as a search problem
 - the policy outputs incremental placement improvement steps
- Propose GiPH for adaptive placement learning
 - an RL-based framework for learning generalizable placement policies for selecting a sequence of placement update steps that scale to problems of arbitrary size
- Evaluate on synthetic data and present a case study
 - GiPH finds placements with up to 30.5% lower SLR, searching up to 3X faster than other search-based placement policies.
- > Next step: real-world deployment
 - Realistic dynamics that accounts for potential relocation overhead and dynamic application arrivals

Electrical & Computer ENGINEERING

Thanks!

- Code: https://github.com/uidmice/placement-rl
- Contact: yihu@andrew.cmu.edu

Placement: Makespan Minimization

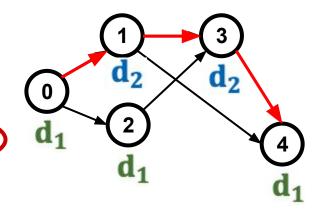
For time-sensitive applications, it is important to minimize the *completion time*, i.e., makespan

 The time duration from the start of the first task's execution to the end of the last task's execution

$$\min_{\mathcal{M}} \rho(\mathcal{M}|G, N) = \min_{\mathcal{M}} \max_{p \in P(G)} \left(\sum_{i \in p} c_i + \sum_{(i,j) \in p} c_{ij} \right)$$

- The total cost along the critical path
- Depends on the placement of all tasks
- NP-hard

Hard to place the whole graph all at once!

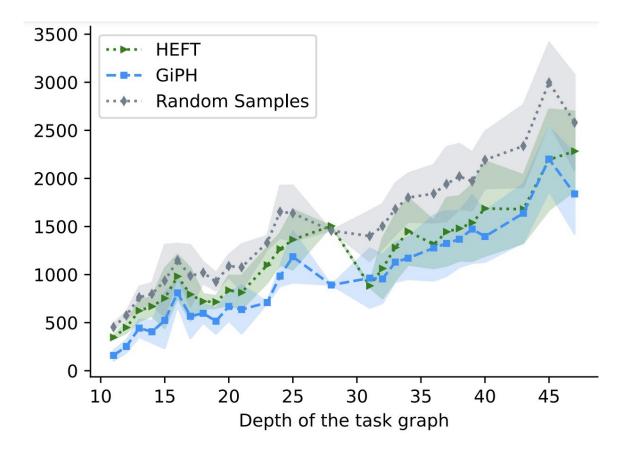


Future Work

- Consider realistic dynamics
 - Potential relocation overhead
 - Dynamic application arrival
- Deploy GiPH on real-world device clusters
 - Real-world system with centralized administration
- Extend the work for dynamic task relocation
 - Time-sensitive task relocation with overhead

Contact: yihu@andrew.cmu.edu

Total Energy Minimization



Challenges

- Combinatorial in nature (NP-hard)
- Devices are heterogeneous
 - Different types
 - Various compute/communication capabilities
- Devices can enter and exit the system
 - The set of devices changes
 - May also change the application graph (data sources)

Require a solution that can scale to different number of devices and can efficiently encode information as the device set changes.

Experiments

RL Training: REINFORCE

$$\theta \leftarrow \theta + \alpha \sum_{t=0}^{T} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r_{t'} - b_{t} \right)$$

Baselines:

- Random, HEFT, Placeto, RNN-based Placer
- Random task selection + EFT device selection
- GiPH task selection + EFT device selection

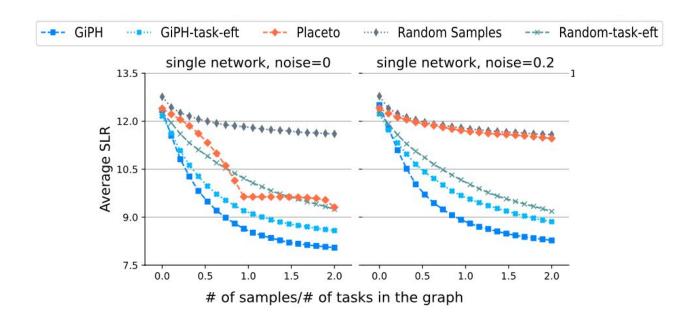
Datasets:

- Synthetic data
- Realistic application traces (case study)

Metrics:

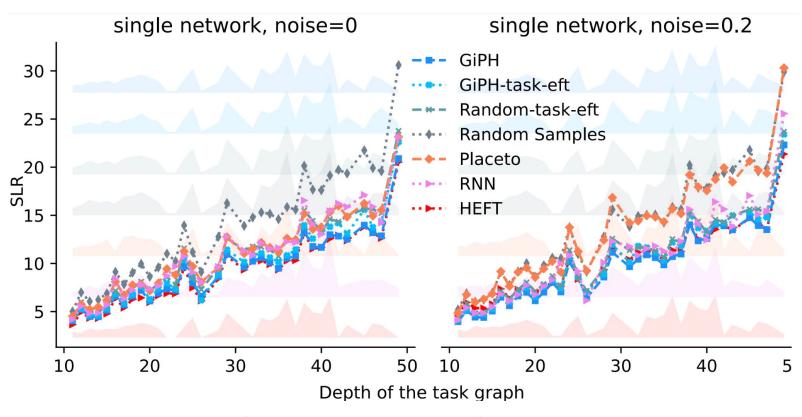
- Placement quality (Schedule Length Ratio)
- Placement adaptivity

Evaluation: Search Efficiency



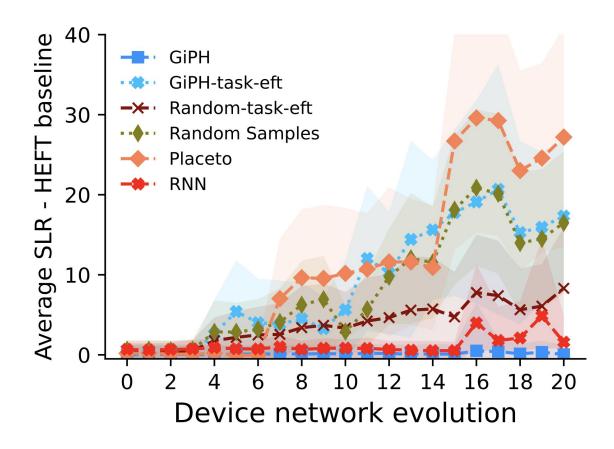
 Find <u>better</u> placement (up to 30.5% lower SLR) with <u>higher</u> search efficiency than baselines

Evaluation: Placement Quality



- GiPH outperforms HEFT on 59% of test cases, and ties on 5.2%.
- RNN-placer trained on individual test cases

Evaluation: Adaptivity



- Test on a *changing* device network
- As the device network changes, GiPH maintains <u>stable</u>
 <u>performance</u>