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Overview

⬛ Constrained IoT Environmental Sensing

▪ Motivation & Challenges

⬛ Problem Formulation

▪ System Model

▪ Data Value

⬛ EnvSen Framework

⬛ Evaluation

⬛ Conclusion
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⬛ IoT technologies have enabled building numerous data-driven
applications/services

⬛ Interconnecting a vary large number of devices equipped with 
networking, sensing, and processing capacities

⬛ Ubiquitous sensing capabilities

⬛ Healthcare, civil engineering, 
environmental monitoring

IoT Sensing
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Large wildfires cause severe air pollution, burn millions of acres…

To fight wildfires and reduce damage:

• Fire chiefs rely on real-time

environmental data to track and predict 

wildfire spread

• IoT devices: collaboratively collecting 

wildfire-relevant data in real time (wind 
direction/speed, temperature, etc. )

Motivating Example: Wildfire Tracking
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⬛ Constrained Communication:

▪ LoRa, Sigfox…

▪ Stringent bandwidth constraints

Wireless spectrum

Challenge 1: Resource Constraints 
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⬛ Constrained Communication:

▪ LoRa, Sigfox…

▪ Stringent bandwidth constraints

⬛ Limited energy budget:

▪ Maintain up to 10 years of battery life

⬛ We cannot ask sensors to continually send data

▪ Will quickly drain IoT sensors’ limited power 
supply in order to turn on a radio and use it for 
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⬛ Constrained Communication:

▪ LoRa, Sigfox…

▪ Stringent bandwidth constraints

⬛ Limited energy budget:

▪ Maintain up to 10 years of battery life

⬛ We cannot ask sensors to continually send data

▪ Will quickly drain IoT sensors’ limited power 
supply in order to turn on a radio and use it for 
data transmission

Wireless spectrum

Batteries

Challenge 1: Resource Constraints 

Problem: How to efficiently manage data communication and 
collect data from numerous IoT devices?
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Adjacent nodes sample 

correlated data (collaboration) 

Challenge 2: Spatiotemporal Correlation

Sensors

Wind

Adjacent nodes share the  same 

resource pool (competition) 
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Challenge 3: Define Data Value

Sensors

Wind

90%?

80%?

50%?

10%?

How the local observation 

contribute to the global 

sensing problem?
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Optimize data sampling & transmission of IoT devices 
Objective: maximize the quality of collected data

s.t. resource constraints.

Communication Planning
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Optimize data sampling & transmission of IoT devices 
Objective: maximize the quality of collected data

s.t. resource constraints.

⬛ Requirement to coordinate data collection and transmission 

▪ Sensor data can be correlated in space and time 

▪ Collect useful (not redundant) data while respecting the 
resource constraints

⬛ Highly decentralized

▪ Due to limited wireless spectrum/power supply

▪ No direct point-to-point communication

▪ Limited information sharing across the network

Communication Planning
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Problem Formulation

● System Model

● Data Value
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System Model

Real physical 

conditions 𝐗𝑡

1
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4

IoT sensors

Fusion center

Belief 
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Real physical 

conditions 𝐗𝑡

System Model

1

2

6

3

5

4

IoT sensors

Fusion center

Communication cost 𝑐𝑖

Transmission successful 

prob 𝑃𝑡
𝑖

Belief Time     Acquired data 

⋮ ⋮

Fusion center

𝑡 𝑥𝑡
1, 𝑥𝑡

5

ℎ𝑡−1

ℎ𝑡

𝐘𝑡+1 ← ℎ𝑡(𝑡 + 1)
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Real physical 

conditions 𝐗𝑡+1

1

2

6

3

5

4

IoT sensors

Fusion center

Communication cost 𝑐𝑖

Transmission successful 

prob 𝑃𝑡
𝑖

System Model

Belief Time     Acquired data 

⋮ ⋮

Fusion center

𝑡 𝑥𝑡
1, 𝑥𝑡

5 ℎ𝑡

𝑡 + 1 𝑥𝑡+1
2 , 𝑥𝑡+1

3

⋮ ⋮

ℎ𝑡−1
𝐘𝑡+1 ← ℎ𝑡(𝑡 + 1)

ℎ𝑡+1

𝐘𝑡+2 ← ℎ𝑡+1(𝑡 + 2)

Error loss (application specific): 

𝐿𝑡 = 𝑙 𝑿𝒕 − 𝒀𝒕
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Data Value

Real physical 

conditions

Belief

𝑿𝒕

𝒀𝒕 = 𝒉𝒕−𝟏(𝒕)

Goal: minimize the error loss over time

Error loss (before): 𝐿𝑡 = 𝑙 𝑿𝒕 − 𝒀𝒕
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Data Value

i

Real physical 

conditions

Belief

𝑿𝒕

Goal: track the environmental conditions 

as accurately as possible over time

If 𝒙𝒕
𝒊 is collected at 

time t 

𝒉𝒕
+𝒊(𝒕)

New error loss: 

𝐿𝑡
𝑖 = 𝑙 𝑿𝒕 − 𝒉𝒕

+𝒊 𝒕

𝒙𝒕
𝒊

Data value of 𝒙𝒕
𝒊 :

𝑣𝑡
𝑖 = 𝐿𝑡 − 𝐿𝑡

𝑖

Error loss (before): 𝐿𝑡 = 𝑙 𝑿𝒕 − 𝒀𝒕

𝒀𝒕 = 𝒉𝒕−𝟏(𝒕)
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Communication Planning

Collectively maximize the sum over the value of the 
collected data at the expense of the communication cost.
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Communication Planning

⬛ Communication cost

𝑐𝑡 =෍

𝑖∈𝐼𝑡

𝑐𝑖

Collectively maximize the sum over the value of the 
collected  data at the expense of the communication cost.

𝐼𝑡: the set of sensors 

that transmit at t
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Communication Planning

⬛ Communication cost

𝑐𝑡 =෍

𝑖∈𝐼𝑡

𝑐𝑖

⬛ Expected data value

𝑣𝑡 =෍

𝑖∈𝐼𝑡

𝑃𝑖 𝐼𝑡 𝑣𝑡
𝑖

Collectively maximize the sum over the value of the 
collected  data at the expense of the communication cost.

𝑃𝑖 𝐼𝑡 : the transmission 

successful probability of 

device i if the set 𝐼𝑡 are 

transmitting at t 

𝐼𝑡: the set of sensors 

that transmit at t
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Communication Planning

⬛ Communication cost

𝑐𝑡 =෍

𝑖∈𝐼𝑡

𝑐𝑖

⬛ Expected data value

𝑣𝑡 =෍

𝑖∈𝐼𝑡

𝑃𝑖 𝐼𝑡 𝑣𝑡
𝑖

⬛ System objective

max
𝜋

𝔼𝐼𝑡∼𝜋 ෍

𝑖∈𝐼𝑡

𝑃𝑖 𝐼𝑡 𝑣𝑡
𝑖 −𝑤𝑐𝑖

Collectively maximize the sum over the value of the 
collected  data at the expense of the communication cost.

𝑃𝑖 𝐼𝑡 : the transmission 

successful probability of 

device i if the set 𝐼𝑡 are 

transmitting at t 

𝐼𝑡: the set of sensors 

that transmit at t



Carnegie Mellon

23

EnvSen: RL Framework
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Physical 

Conditions

Belief Model

𝒉𝑡−1 → 𝒉𝑡

C
o
m

m
u
n
icatio

n

N
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o
rk

Agents (IoT sensors)

𝐴𝑡𝑆𝑡 = (𝑿𝑡, 𝒀𝑡)
…

EnvSen Framework

Policies

𝑿𝑡+1 𝒀𝑡+1 = 𝒉𝑡 𝑡 + 1

𝑿𝑡
𝒔

𝑠𝑡
𝑖

⬛ State: local obs + belief
𝑠𝑡
𝑖 = (𝑥𝑡

𝑖, 𝒀𝑡)
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Physical 

Conditions

Belief Model

𝒉𝑡−1 → 𝒉𝑡
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Agents (IoT sensors)

𝐴𝑡𝑆𝑡 = (𝑿𝑡, 𝒀𝑡)
…

EnvSen Framework

Policies

𝑿𝑡+1 𝒀𝑡+1 = 𝒉𝑡 𝑡 + 1

𝑿𝑡
𝒔

𝑠𝑡
𝑖 𝑎𝑡

𝑖

⬛ State: local obs + belief
𝑠𝑡
𝑖 = (𝑥𝑡

𝑖, 𝒀𝑡)

⬛ Action: send or not

𝑎𝑡
𝑖 ∈ 1,0
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Physical 

Conditions

Belief Model

𝒉𝑡−1 → 𝒉𝑡

C
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m

m
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rk

Agents (IoT sensors)

𝐴𝑡𝑆𝑡 = (𝑿𝑡, 𝒀𝑡)
…

EnvSen Framework (training)

Policies

𝑿𝑡+1 𝒀𝑡+1 = 𝒉𝑡 𝑡 + 1

𝑿𝑡
𝒔

𝑠𝑡
𝑖 𝑎𝑡

𝑖

⬛ State: local obs + belief
𝑠𝑡
𝑖 = (𝑥𝑡

𝑖, 𝒀𝑡)

⬛ Action: send or not

𝑎𝑡
𝑖 ∈ 1,0𝑽𝑡

𝑟𝑡
𝑖

⬛ Reward:

𝑟𝑡
𝑖 = 𝑎𝑡

𝑖 𝟏𝑠𝑢𝑐𝑐𝑣𝑡
𝑖 −𝑤𝑐𝑖
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EnvSen vs. Prior Work

⬛ vs. IoT sensing: 
▪ Uniquely considers distributed communication coordination 

of multiple nodes

▪ No device-to-device communication

⬛ vs. mobile crowdsourcing: 
▪ In fixed locations in an ad hoc manner

⬛ vs. Mult-Agent RL on communication coordination: 
▪ No centralized orchestration

▪ Realistic communication constraints

▪ Dedicated sensing objective
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Evaluation 

● Experiment Setup

● Performance

● Tradeoff



Carnegie Mellon

29

Setup 

Wildfire tracking & 200 sensors.

⬛ Wildfire data:
▪ GRASS GIS

▪ 200 instances of realistic 
propagation

⬛ LoRa communication 
network
▪ Log-distance path loss

▪ 4 channels, one gateway

Fire spread 

Water 

Fuel

Snow/ice

Barren

--

Yosemite
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Performance

Bandwidth-Limited Channel

Realistic LoRa Network

Bandwidth-Limited Channel

Realistic LoRa Network

Bandwidth-Limited Channel

Realistic LoRa Network

Bandwidth-Limited Channel

Realistic LoRa Network

Bandwidth-Limited Channel

Realistic LoRa Network

Bandwidth-Limited Channel

Realistic LoRa Network
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Tradeoff (varying w)

Better

OPT: centralized optimal 

policy with full information

(Bandwidth-limited channel)

Able to balance the tradeoff between conserving device               

power and maintaining high tracking accuracy.

EnvSen: adapt to varying 

weighting factor and very 
close to the optimal policy
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⬛ Formulate the constrained IoT sensing problem

▪ Combine the energy cost of communication, tracking accuracy, 

and models for successful data transmission

⬛ Propose EnvSen (MARL solution)

▪ Define data value based on the dedicated sensing objective 

⬛ Evaluate on realistic wildfire propagation data

▪ Balance the tradeoff between conserving device power and 

maintaining high tracking accuracy

Conclusion 
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Thanks! 

● Contact: yihu@andrew.cmu.edu

mailto:yihu@andrew.cmu.edu
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