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Overview

m Constrained loT Environmental Sensing
= Motivation & Challenges

m Problem Formulation

= System Model
= Data Value

m EnvSen Framework
m Evaluation

m Conclusion
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loT Sensing

m loT technologies have enabled building numerous data-driven
applications/services

m /nterconnecting a vary large number of devices equipped with
networking, sensing, and processing capacities

m Ubiquitous sensing capabilities

m Healthcare, civil engineering,
environmental monitoring
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Motivating Example: Wildfire Tracking

Large wildfires cause severe air pollution, burn millions of acres...

To fight wildfires and reduce damage:

» Fire chiefs rely on real-time
environmental data to track and predict
wildfire spread

« |oT devices: collaboratively collecting
wildfire-relevant data in real time (wind
direction/speed, temperature, etc. )
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Challenge 1: Resource Constraints

B Constrained Communication:
= LoRa, Sigfox...

= Stringent bandwidth constraints

Wireless spectrum
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Challenge 1: Resource Constraints

B Constrained Communication:
= LoRa, Sigfox...
= Stringent bandwidth constraints
B Limited energy budget:
= Maintain up to 10 years of battery life
B We cannot ask sensors to continually send data

= Will quickly drain loT sensors’ limited power

supply in order to turn on a radio and use it for
data transmission
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Challenge 1: Resource Constraints

B Constrained Communication:

o
Ia sggauﬂ B

= LoRa, Sigfox... THn
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= Stringent bandwidth constraints ‘

B Limited energy budget: Wireless spectrum
= Maintain up to 10 years of battery life
B We cannot ask sensors to continually send data QE @

= Will quickly drain loT sensors’ limited power
supply in order to turn on a radio and use it for
data transmission

Batteries

Problem: How to efficiently manage data communication and
collect data from numerous loT devices?
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Challenge 2: Spatiotemporal Correlation

Adjacent nodes sample
correlated data (collaboration)

Adjacent nodes share the same
resource pool (competition)



orical
7 ERGivEERRE

Challenge 3: Define Data Value
4 A

How the local observation
contribute to the global
sensing problem?
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Communication Planning

Optimize data sampling & transmission of loT devices
Objective: maximize the quality of collected data

s.t. resource constraints.
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Communication Planning

Optimize data sampling & transmission of loT devices
Objective: maximize the quality of collected data

s.t. resource constraints.

m Requirement to coordinate data collection and transmission
= Sensor data can be correlated in space and time

= Collect useful (not redundant) data while respecting the
resource constraints

m Highly decentralized
= Due to limited wireless spectrum/power supply
= No direct point-to-point communication
= Limited information sharing across the network

12



Problem Formulation

. System Model
. Data Value
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System Model
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System Model

Time

Acquired data

1 .5
Xt Xt

Carnegie Mellon

7 ERGivEERRE

;f

Yt < he(t+ 1)

Fusion center

4 <z S [/
i % i
./ ;‘6‘[ /IoTsensors
. v
=

ill

Communication cost ¢!
Transmission successful




Carnegie Mellon

7 ERGivEERRE

System Model

Time Acquired data

Yiio2 < hepqr(E+ 2)

Fusion center

L

t+1 Xip1, Xipr  hesd

Communication cost ¢!

Transmission successful

Error loss (application specific):
Lt - l(Xt — Yt)
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Data Value Goal: minimize the error loss over time

Y, = ht—l(t)

Real physical
conditions

X

Error loss (before): L, = I(X; —Y,)
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Goal: track the environmental conditions

Data Value as accurately as possible over time

. X If x% is collected at
3l ot

—

Y =h1(0) hti(t)

New error loss:
Li=1(X, — h{()

Real physical
conditions

Data value of

[ — _
X, Ve =

Error loss (before): L, = I(X; —Y,)
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Communication Planning

Collectively maximize the sum over the value of the
collected data at the expense of the communication cost.
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Communication Planning

Collectively maximize the sum over the value of the
collected data at the expense of the communication cost.

m Communication cost

= z i I, the set of sensors
=

that transmit at t
i€l;
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Communication Planning

Collectively maximize the sum over the value of the
collected data at the expense of the communication cost.

m Communication cost

= z i I, the set of sensors
=

that transmit at t
i€l;

m Expected data value o
. P;(I;): the transmission
Ve = E P;(I.)v} successful probability of
el device i if the set I, are
t __
transmitting at t

21



Carnegie Mellon

Communication Planning

Collectively maximize the sum over the value of the
collected data at the expense of the communication cost.

m Communication cost

= z i I;: the set of sensors
t that transmit at t

m Expected data value o
P;(I;): the transmission

v, = z P (1) v} successful probability of
device i if the set I; are

m System objective transmitting at t

max E; . [z P;(I)vi — WCi]
T

i€l
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EnvSen: RL Framework
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EnvSen Framework

m State: local obs + belief

Physical :
st = (x¢, Yt)

Conditions

Belief Model
hi—1 = h;

Xt+1 Yeiq = he(t + 1)

Agents (10T sensors)

J
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Policies
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EnvSen Framework

m State: local obs + belief
Sé = (xf;, Y¢)
m Action: send or not
at € {1,0}

Physical

Conditions

Belief Model
hi—1 = h;

Xt+1 Yeiq = he(t + 1)

Agents (10T sensors)

J

YJOMIBN
uonedIuNWWoD

[

Policies
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EnvSen Framework (training)

Physical [ B}i“ef i/'olfe' m State: local obs + belief
Conditions (-1 ‘ st = (xt,Yy)
m Action: send or not
Xev1 || Yern =he(t+ 1) Ve atl:“ € {1,0}
Agents (IovT sensors) m Reward:
e rti = a%(lsuccvg - Wci)

YJOMIBN
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[

Policies
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EnvSen vs. Prior Work

m Vs. loT sensing:

= Uniquely considers distributed communication coordination
of multiple nodes

= No device-to-device communication

m Vs. mobile crowdsourcing:
= |n fixed locations in an ad hoc manner

m Vs. Mult-Agent RL on communication coordination:
= No centralized orchestration
= Realistic communication constraints
= Dedicated sensing objective
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Evaluation

« Experiment Setup
. Performance
. Tradeoff
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Setup
Wildfire tracking & 200 sensors.
m Wildfire data: et

Water

o
o
B Fe
O
8

= GRASS GIS

= 200 instances of realistic
propagation

m LoRa communication
network

= Log-distance path loss

Snow/ice

Barren

= 4 channels, one gateway ' Yosemite
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Performance
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Data Value
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Tradeoff (varying w)

(Bandwidth-limited channel)

Tradeoff: Data Value vs. Cost ("

\

J

EnvSen: adapt to varying
o E,fﬁg'g;'% weighting factor and very
01 o - close to the optimal policy
—@- RANDOM-6
OPT
2 407 OPT_ASYNC
: i - Q —+ EnvSen-DDPG
Onl e |9 ] ensmoorcrs
(@)}
3 Better
N
10 -
_._
&
3 4 5 6 7 8
Data Value

Able to balance the tradeoff between conserving device
power and maintaining high tracking accuracy.
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Conclusion

m Formulate the constrained loT sensing problem

= Combine the energy cost of communication, tracking accuracy,

and models for successful data transmission

m Propose EnvSen (MARL solution)

= Define data value based on the dedicated sensing objective

m Evaluate on realistic wildfire propagation data

= Balance the tradeoff between conserving device power and

maintaining high tracking accuracy
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Thanks!

. Contact: yvihu@andrew.cmu.edu
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