SECON 2023

Carnegie Mellon University

Intelligent Communication Planning for Constrained Environmental IoT Sensing with Reinforcement Learning

<u>Yi Hu</u>, Jinhang Zuo, Bob Iannucci, Carlee Joe-Wong CMU, Electrical & Computer Engineering

Overview

Constrained IoT Environmental Sensing

Motivation & Challenges

Problem Formulation

- System Model
- Data Value
- EnvSen Framework
- Evaluation
- Conclusion

IoT Sensing

- IoT technologies have enabled building numerous *data-driven* applications/services
- Interconnecting a vary large number of devices equipped with networking, sensing, and processing capacities

- Ubiquitous sensing capabilities
- Healthcare, civil engineering, environmental monitoring

Motivating Example: Wildfire Tracking

Large wildfires cause severe air pollution, burn *millions* of acres...

To fight wildfires and reduce damage:

- <u>Fire chiefs</u> rely on *real-time* environmental data to track and predict wildfire spread
- <u>IoT devices</u>: collaboratively collecting wildfire-relevant data in real time (wind direction/speed, temperature, etc.)

Challenge 1: Resource Constraints

Constrained Communication:

- LoRa, Sigfox...
- Stringent bandwidth constraints

Wireless spectrum

Challenge 1: Resource Constraints

Constrained Communication:

- LoRa, Sigfox...
- Stringent bandwidth constraints
- Limited energy budget:
 - Maintain up to 10 years of battery life

Wireless spectrum

_	_	
II		

Batteries

Challenge 1: Resource Constraints

Constrained Communication:

- LoRa, Sigfox...
- Stringent bandwidth constraints
- Limited energy budget:
 - Maintain up to 10 years of battery life

We cannot ask sensors to continually send data

 Will quickly drain IoT sensors' limited power supply in order to turn on a radio and use it for data transmission

Wireless spectrum

_		

Batteries

Electrical Computer

Challenge 1: Resource Constraints

Constrained Communication:

- LoRa, Sigfox...
- Stringent bandwidth constraints
- Limited energy budget:
 - Maintain up to 10 years of battery life

We cannot ask sensors to continually send data

 Will quickly drain IoT sensors' limited power supply in order to turn on a radio and use it for data transmission

Problem: How to **efficiently** manage data communication and collect data from **numerous** IoT devices?

Wireless spectrum

-		-	
	1 1		

Challenge 2: Spatiotemporal Correlation

ENGINEERING

Challenge 3: Define Data Value

Communication Planning

Optimize data sampling & transmission of IoT devicesObjective:maximize the quality of collected datas.t. resource constraints.

Communication Planning

Optimize data sampling & transmission of IoT devicesObjective:maximize the quality of collected datas.t. resource constraints.

Requirement to coordinate data collection and transmission

- Sensor data can be correlated in space and time
- Collect useful (not redundant) data while respecting the resource constraints

Highly decentralized

- Due to limited wireless spectrum/power supply
- No direct point-to-point communication
- Limited information sharing across the network

Problem Formulation

- System Model
- Data Value

ENGINEERING

System Model

System Model

System Model

Data Value

Goal: minimize the error loss over time

17

Data Value

Goal: track the environmental conditions as *accurately* as possible over time

Communication Planning

Collectively maximize the sum over <u>the value of the</u> <u>collected data</u> at the expense of the <u>communication cost</u>.

Communication Planning

Collectively maximize the sum over <u>the value of the</u> <u>collected data</u> at the expense of the <u>communication cost</u>.

Communication cost

$$c_t = \sum_{i \in I_t} c^i$$

 I_t : the set of sensors that transmit at t

Communication Planning

Collectively maximize the sum over <u>the value of the</u> <u>collected data</u> at the expense of the <u>communication cost</u>.

Communication cost

$$c_t = \sum_{i \in I_t} c^i$$

 I_t : the set of sensors that transmit at t

Expected data value

$$v_t = \sum_{i \in I_t} \frac{P_i(I_t) v_t^i}{v_t^i}$$

 $P_i(I_t)$: the transmission successful probability of device *i* if the set I_t are transmitting at *t*

Communication Planning

Collectively maximize the sum over <u>the value of the</u> <u>collected data</u> at the expense of the <u>communication cost</u>.

Communication cost

Expected data value

$$c_t = \sum_{i \in I_t} c^i$$

 $v_t = \sum_{i} P_i(I_t) v_t^i$

 I_t : the set of sensors that transmit at t

 $P_i(I_t)$: the transmission successful probability of device *i* if the set I_t are transmitting at *t*

System objective

$$\max_{\pi} \mathbb{E}_{I_t \sim \pi} \left[\sum_{i \in I_t} P_i(I_t) v_t^i - wc^i \right]$$

EnvSen: RL Framework

ENGINEERING

EnvSen Framework

State: local obs + belief $s_t^i = (x_t^i, Y_t)$

ENGINEERING

EnvSen Framework

ENGINEERING

EnvSen Framework (training)

EnvSen vs. Prior Work

vs. IoT sensing:

- Uniquely considers distributed communication coordination of multiple nodes
- No device-to-device communication
- vs. mobile crowdsourcing:
 - In fixed locations in an ad hoc manner
- vs. Mult-Agent RL on communication coordination:
 - No centralized orchestration
 - Realistic communication constraints
 - Dedicated sensing objective

Evaluation

- Experiment Setup
- Performance
- Tradeoff

Setup

Wildfire tracking & 200 sensors.

Wildfire data:

- GRASS GIS
- 200 instances of realistic propagation
- LoRa communication network
 - Log-distance path loss
 - 4 channels, one gateway

Performance

Tradeoff (varying w)

Able to balance the tradeoff between conserving device power and maintaining high tracking accuracy.

31

Conclusion

Formulate the constrained IoT sensing problem

- Combine the energy cost of communication, tracking accuracy, and models for successful data transmission
- Propose EnvSen (MARL solution)
 - Define data value based on the dedicated sensing objective
- Evaluate on realistic wildfire propagation data
 - Balance the tradeoff between conserving device power and maintaining high tracking accuracy

Thanks!

• Contact: yihu@andrew.cmu.edu