FMSys 2024

Carnegie Mellon University

CoRAST: Towards Foundation Model-Powered Correlated Data Analysis in Resource-Constrained CPS and IoT

<u>Yi Hu</u>, Jinhang Zuo, Alanis Zhao, Bob Iannucci, Carlee Joe-Wong CMU, Electrical & Computer Engineering

Engineering

Overview

Correlated Data Analysis

- Background & Motivation
- FM & Challenges
- CoRAST Framework

FM for <u>Analyzing Spatially and Temporally</u> <u>CoR</u>related data

Evaluation

Conclusion

Motivations: Correlated Data in CPS/IoT

Data collected from <u>the same physical environment</u>

Motivations: Correlated Data in CPS/IoT

- Data collected from <u>the same physical environment</u>
- Inherently rich in spatial/temporal/cross-modal correlations
- E.g., visual-supported speech recognition

Motivations: Correlated Data in CPS/IoT

- Data collected from <u>the same physical environment</u>
- Inherently rich in spatial/temporal/cross-modal correlations
- E.g., visual-supported speech recognition

Motivations: Correlated Data Analysis

Spatiotemporal Correlation

Motivations: Correlated Data Analysis

- Spatiotemporal Correlation
 - Data collected at different locations

Motivations: Correlated Data Analysis

- Spatiotemporal Correlation
 - Data collected at different locations
 - Temporal evolution/dynamics

Motivations: Correlated Data Analysis

Spatiotemporal Correlation

- Data collected at different locations
- Temporal evolution/dynamics
- Multi-Modality & Data Heterogeneity
 - Time-series, audio, video streams...

Motivations: Correlated Data Analysis

- Spatiotemporal Correlation
 - Data collected at different locations
 - Temporal evolution/dynamics
- Multi-Modality & Data Heterogeneity
 - Time-series, audio, video streams...
- Data Fusion & Learning
 - Facilitate the extraction of useful aspects from distributed data

Foundation Models

- Trained on broad data, generally in a self-supervised manner
- Can be adapted (fine-tuned) to a wide range of downstream tasks [1]

Foundation Models Can...

Transfer learning

Transformers: Self-supervised learning: convert diverse inputs into embeddings pretraining from unannotated data

Foundation Models are Promising...

LLM for time series analysis (adaptation)

- GPT4TS [2], LLM4TS [3] for forecasting, anomaly detection
- Multi-modal models (representation learning):
 - CLIP [4]: text-image translation (text/image encoders + contrastive learning)
 - Macaw-LLM [5]: integrate image, audio, video, and text
 - CreamFL [6]: federated learning of modality-specific representations

Challenge 1: Resource Constraints

Challenge 2: Correlated Local Tasks

Distributed decision-making \rightarrow localized tasks/models

Spatiotemporal Correlation

- Anomaly detection at different points
- Intersection traffic light control

 $f_3(x_3, t_3)$

 $f_1(x_1, t_1)$

 $f_2(x_2,t_2)$

- **Cross-modality Correlation**
 - Visual (lip reading) and audio (speech recognition)
 - Weather data (pressure, moisture) and forecast

CoRAST:

FM for <u>Analyzing Spatially and <u>Temporally</u> <u>CoR</u>related data</u>

- Server-Based Representation Learning
- Client Local Training

CoRAST

CoRAST: Representation Learning

CoRAST: Representation Learning

CoRAST: Representation Learning

CoRAST: Local Training

CoRAST: Runtime

Clients

Run moderately-sized local models

Server

Utilize FM to generate contextual representation

Communication (server \rightarrow clients)

Representations sent at intervals of local decision-making

Evaluation

- Aligned Objective
- Diverse Local Tasks

Experiment Setup

Weather dataset: Temperature, pressure (p), relative humidity (rh)...

	Server	Clients	Representation
Model	TS2Vec	TCN	
# of parameters	Over 33.7k	13~15.2k	256

Carnegie Mellon

ENGINEERING

H2CO Forecast

Setting 1	Local data	Task	
Centralized	Tdew, rh, sh	→ H2CO	
	Tdew	→ H2CO	
Distributed	rh	→ H2CO	
	sh	→ H2CO	

Local data	Task	
Tdew, rh, sh, Tpot, p	→ H2CO	
Tdew, Tpot	→ H2CO	
rh, p	→ H2CO	
sh	→ H2CO	
	Local data Tdew, rh, sh, Tpot, p Tdew, Tpot rh, p sh	

Test MSE

0

1000

2000

3000

3000

0

1000

2000

Setting	No FM	CoRAST-rho	CoRAST
1-centralized	0.195	0.182	0.171
1-distributed	0.391	0.303	0.201
2-centralized	0.075	0.055	0.061
2-distributed	0.151	0.146	0.063

- CoRAST significantly improves distributed learning by adding additional environmental insights.
- CoRAST facilitates a more effective aggregation of client data.

Carnegie Mellon

ENGINEERING

Local Forecast

Setting 1	Local data	Task
Centralized	Tdew, rh, sh	\rightarrow Tdew, rh, sh
	Tdew	→ Tdew
Distributed	rh	\rightarrow rh
	sh	→ sh

Setting 2	Local data	Task	
Centralized	Tdew, rh, sh, Tpot, p	→ Tdew, rh, sh, Tpot, p	
Distributed	Tdew, Tpot	\rightarrow Tdew, Tpot	
	rh, p	\rightarrow rh, p	
	sh	→ sh	

Test MSE

Setting	Variable	No FM	CoRAST-rho	CoRAST
1-distributed	Tdew	0.072	0.056	0.075
	rh	0.297	0.318	0.276
	sh	0.077	0.072	0.059
2-distributed	Tdew	1.953	1.796	1.853
	rh	0.223	0.216	0.211
	sh	1.945	1.912	1.930
	p	0.151	0.159	0.145
	Tpot	2.633	2.544	2.438

CoRAST can enhance the distributed learning of interrelated tasks.

Engineering

Conclusion

CoRAST Framework

The first FM-based learning framework for analyzing correlated heterogeneous data that support diverse downstream tasks

Proof-of-concept Evaluation

 CoRAST improves distributed learning on a real-world weather dataset, reducing forecasting errors with its FMbased global learning approach.

References

[1] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*.

[2] Zhou, T., Niu, P., Sun, L., & Jin, R. (2024). One fits all: Power general time series analysis by pretrained Im. *Advances in neural information processing systems*, *36*.

[3] Chang, C., Peng, W. C., & Chen, T. F. (2023). Llm4ts: Two-stage fine-tuning for time-series forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469.

[4] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.

[5] Lyu, C., Wu, M., Wang, L., Huang, X., Liu, B., Du, Z., ... & Tu, Z. (2023). Macaw-Ilm: Multimodal language modeling with image, audio, video, and text integration. arXiv preprint arXiv:2306.09093.

[6] Yu, Q., Liu, Y., Wang, Y., Xu, K., & Liu, J. (2023). Multimodal federated learning via contrastive representation ensemble. arXiv preprint arXiv:2302.08888.

Thanks!

• Contact: yihu@andrew.cmu.edu

Carnegie Mellon

ENGINEERING

CoRAST: Continual Learning

Carnegie Mellon

ENGINEERING

Future Work: Architecture Design

