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Overview

⬛ Correlated Data Analysis

▪ Background & Motivation

⬛ FM & Challenges

⬛ CoRAST Framework

⬛ FM for Analyzing Spatially and Temporally CoRrelated data

⬛ Evaluation

⬛ Conclusion
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⬛ Data collected from the same physical environment

Motivations: Correlated Data in CPS/IoT

Physical Environment

Edge
Devices
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⬛ Data collected from the same physical environment

⬛ Inherently rich in spatial/temporal/cross-modal correlations

⬛ E.g., visual-supported speech recognition

Motivations: Correlated Data in CPS/IoT

Physical Environment

Edge
Devices

Correlation
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⬛ Data collected from the same physical environment

⬛ Inherently rich in spatial/temporal/cross-modal correlations

⬛ E.g., visual-supported speech recognition

Motivations: Correlated Data in CPS/IoT

Physical Environment

Edge
Devices

Correlation

Edge
Intelligence

Task 1 Task 2 Task 3
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Motivations: Correlated Data Analysis

⬛ Spatiotemporal Correlation

𝑓1(𝒙𝟐, 𝑡)

𝑓2(𝒙𝟐, 𝑡)

𝑓4(𝒙𝟏, 𝑡)

𝑓1(𝒙𝟑, 𝑡)

𝑓3(𝒙𝟑, 𝑡)
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Motivations: Correlated Data Analysis

⬛ Spatiotemporal Correlation
▪ Data collected at different locations

𝑓1(𝒙𝟐, 𝑡)

𝑓2(𝒙𝟐, 𝑡)

𝑓4(𝒙𝟏, 𝑡)

𝑓1(𝒙𝟑, 𝑡)

𝑓3(𝒙𝟑, 𝑡)
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Motivations: Correlated Data Analysis

⬛ Spatiotemporal Correlation
▪ Data collected at different locations

▪ Temporal evolution/dynamics

𝑓1(𝒙𝟐, 𝒕)

𝑓2(𝒙𝟐, 𝒕)

𝑓4(𝒙𝟏, 𝒕)

𝑓1(𝒙𝟑, 𝒕)

𝑓3(𝒙𝟑, 𝒕)



Carnegie Mellon

9

Motivations: Correlated Data Analysis

⬛ Spatiotemporal Correlation
▪ Data collected at different locations

▪ Temporal evolution/dynamics

⬛ Multi-Modality & Data Heterogeneity
▪ Time-series, audio, video streams…

𝒇𝟏(𝒙𝟐, 𝒕)

𝒇𝟐(𝒙𝟐, 𝒕)

𝒇𝟒(𝒙𝟏, 𝒕)

𝒇𝟏(𝒙𝟑, 𝒕)

𝒇𝟑(𝒙𝟑, 𝒕)
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Motivations: Correlated Data Analysis

⬛ Spatiotemporal Correlation
▪ Data collected at different locations

▪ Temporal evolution/dynamics

⬛ Multi-Modality & Data Heterogeneity
▪ Time-series, audio, video streams…

⬛ Data Fusion & Learning
▪ Facilitate the extraction of useful aspects

from distributed data

𝒇𝟏(𝒙𝟐, 𝒕)

𝒇𝟐(𝒙𝟐, 𝒕)

𝒇𝟒(𝒙𝟏, 𝒕)

𝒇𝟏(𝒙𝟑, 𝒕)

𝒇𝟑(𝒙𝟑, 𝒕)

Hint

(Physical Environment)

𝐹1(𝑡)

𝐹2(𝑡)

𝐹3(𝑡)
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Foundation Models

● Trained on broad data, generally in a self-supervised manner

● Can be adapted (fine-tuned) to a wide range of downstream tasks [1]
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Foundation Models Can…

Source: [1]

This model can then be

adapted to a wide range

of downstream tasks.

Transfer learning
Transformers: convert diverse inputs into embeddings

Self-supervised learning: pretraining from unannotated data

Centralize the

information from all the

data across modalities.
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Foundation Models are Promising…

⬛ LLM for time series analysis (adaptation)

▪ GPT4TS [2], LLM4TS [3] for forecasting, anomaly detection

⬛ Multi-modal models (representation learning):

▪ CLIP [4]: text-image translation (text/image encoders + contrastive learning)

▪ Macaw-LLM [5]: integrate image, audio, video, and text

▪ CreamFL [6]: federated learning of modality-specific representations

Encoder 1

Encoder N

Modality 1

Modality N

Integration

…

Embeddings

…

How to integrate FMs 

into CPS and IoT 
applications? 
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Challenge 1: Resource Constraints 

Source: https://ghostmountainllc.com/foundation-models/

Battery-powered

Limited memory
Limited compute

Millions of parameters

Gigabytes of memory

Parallel processing…

Edge DevicesFoundation Models

Hard to directly host FMs on edge devices
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Challenge 2: Correlated Local Tasks

Distributed decision-making → localized tasks/models

⬛ Spatiotemporal Correlation
▪ Anomaly detection at different points

▪ Intersection traffic light control

⬛ Cross-modality Correlation
▪ Visual (lip reading) and audio (speech recognition)

▪ Weather data (pressure, moisture) and forecast

𝒇𝟏(𝒙𝟏, 𝒕𝟏)

𝒇𝟐(𝒙𝟐, 𝒕𝟐)

𝒇𝟑(𝒙𝟑, 𝒕3)
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CoRAST: 
FM for Analyzing Spatially and Temporally CoRrelated data

● Server-Based Representation Learning

● Client Local Training
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CoRAST: Representation Learning
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Global representation learning: 

• FM hosted on an edge server with sufficient

resources.

• FM is pretrained on historical data in a self-

supervised way for global representation 

learning.
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Correlated
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Data 𝐗𝐭
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𝐹𝑀
backbone

① Pretrain/Adaptation

Prior
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Self-supervised

Representation
Learning

Modality
Adaptation
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③ local training
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Local
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CoRAST: Representation Learning

Server

𝐹𝑀
backbone
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② Distribute

Representation

Correlated

Environment

Data 𝐗𝐭
𝐞𝐧𝐯

Representation Distribution: 

• The edge server has access to environmental data 

𝐗𝐭
𝐞𝐧𝐯 that correlate with the clients’ local data.

• The FM generates and distributes contextual 

representations 𝐇𝑡 aiding downstream local tasks. 
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CoRAST: Local Training

Server
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Local Learning with Global Context: 

• Clients integrate global contexts with local data:

𝑌𝑚 = 𝑓𝑎
𝑚(𝑓𝑙

𝑚 𝐗𝑚 , 𝑓𝑔
𝑚 𝐇 )

• The local loss can be determined by the specific 

local tasks (e.g., classification, prediction) 



Carnegie Mellon

22

𝐹𝑀
backbone

Correlated

Environment

Data 𝐗𝐭
𝐞𝐧𝐯

CoRAST: Runtime
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Local task 1

Local task M

Clients

• Run moderately-sized local models

Server

• Utilize FM to generate contextual 

representation

Communication (server→ clients)

• Representations sent at intervals of local 

decision-making

Server
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Evaluation 

● Aligned Objective

● Diverse Local Tasks
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Experiment Setup 

Server Clients Representation

Model TS2Vec TCN

# of parameters Over 33.7k 13~15.2k 256

Weather dataset: Temperature, pressure (p), relative humidity (rh)…

Client data

server clients

representation

Client data

server clients

representation

rho Client data

clients

CoRAST No FMCoRAST-rho
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H2CO Forecast

Setting 1 Local data Task

Centralized Tdew, rh, sh → H2CO

Distributed

Tdew → H2CO

rh → H2CO

sh → H2CO

Setting 2 Local data Task

Centralized
Tdew, rh, sh, 

Tpot, p

→ H2CO

Distributed

Tdew, Tpot → H2CO

rh, p → H2CO

sh → H2CO

Test MSE

Train MSE Loss

➢ CoRAST significantly improves

distributed learning by adding

additional environmental insights.

➢ CoRAST facilitates a more effective 

aggregation of client data.
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Setting 1 Local data Task

Centralized Tdew, rh, sh → Tdew, rh, sh

Distributed

Tdew → Tdew

rh → rh

sh → sh

Setting 2 Local data Task

Centralized
Tdew, rh, sh, 

Tpot, p

→ Tdew, rh, sh, 

Tpot, p

Distributed

Tdew, Tpot → Tdew, Tpot

rh, p → rh, p

sh → sh

Local Forecast

Test MSE

Train MSE Loss

CoRAST can enhance the distributed

learning of interrelated tasks.
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⬛ CoRAST Framework

⬛ The first FM-based learning framework for analyzing correlated

heterogeneous data that support diverse downstream tasks

⬛ Proof-of-concept Evaluation

⬛ CoRAST improves distributed learning on a real-world

weather dataset, reducing forecasting errors with its FM-

based global learning approach.

Conclusion
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Thanks! 

● Contact: yihu@andrew.cmu.edu

mailto:yihu@andrew.cmu.edu
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Future Work: Architecture Design

Encoders (spatial, cross-modal)

Source 1 Source 2 Source N

Backbone

Task adaptation

…

…

Task 2Task 1
Task M
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