Carnegie Mellon University

GiPH: Generalizable Placement Learning for Adaptive Heterogeneous Computing

Introduction

In heterogeneous computing systems, careful choice of which parts of the application to run on which device can significantly affect latency, e.g., compute-intensive tasks should be run on devices with more computation resources. The key placement challenges are:

- **Diverse** compute/communication capabilities
- Volatile: devices can become unavailable/new devices enter the system
- *Heterogeneous* functions or types (CPUs/GPUs/sensors)

We propose GiPH, a reinforcement learning-based approach to learning placement policies that can adapt to dynamic device networks.

Placement in Heterogeneous Computing

Task graph G (directed acyclic graph)

- Defines a distributed application
- Nodes V: computation/sensingDasksDof different workloads/requirements
- Edges *E*: communication and inter-task dependency

Target computing network N
$$\mathcal{M}^{G \to N} : V \to D$$

- Defines a cluster of interconnected devices $\mathcal{M}(G,N)$ s.t $\mathcal{M}(v_i) \in D_i$
- Devices **D**: the set of devices with different compute/communication capabilities
- Each task v_i can only be mapped to a subset of devices $D_i \subseteq D$

Placement problem

• A mapping from the set of tasks to the set of devices

 $\mathcal{M}^{G \to N}: V \to D$

Objective min $\rho(\mathcal{M}|G, N)$ s.t. $\mathcal{M}(v_i) \in D_i$

Makespan minimization (critical for time-sensitive applications)

- Makespan: the time duration from the start of the first task's execution to the end of the last task's execution (i.e., completion time)
- Equal to the total communication and computation cost along the *critical* path

$$\min_{\mathcal{M}} \rho(\mathcal{M}|G, N) = \min_{\mathcal{M}} \max_{p \in P(G)} \left(\sum_{i \in p} c_i^{comp}(\mathcal{M}) + \sum_{(i,j) \in p} c_{ij}^{comm}(\mathcal{M}) \right)$$

Yi Hu, Chaoran Zhang, Edward Andert, Harshul Singh, Aviral Shrivastava, James Laudon, Yanqi Zhou, Bob Iannucci, Carlee Joe-Wong Contact: yihu@andrew.cmu.edu

State Space: the set of all feasible placement Action Space: the set of all task and device pair that satisfies constraints • $a_t = (v_i, d_j)$: place v_i on d_j

<u>*Reward*</u>: the performance improvement $r_t = \rho(s_{t+1}|G, N) - \rho(s_t|G, N)$

Learning Framework

<u>*gpNet:*</u> a graph representation to efficiently encode information

- Each node corresponds to one action
- Local graph structure of $a_t = (v_i, d_i)$ corresponds to v_i being re-placed to d_i Electrical & Computer
- Graph Neural Network: calculates embedding for each action
- Embed the placement information as a set of vectors
- Message passing: $e_u = h_2 \left(\sum_{v \in \xi(u)} h_1([e_v || x_{uv}^e]) \right) + x_u^n$

Policy Network: decides an action (i.e., relocating a task) to take

- Learnable score function: $q_a = g(e_a)$
- Softmax action selection: $\pi(a|s) = q_a / \sum_{b \in A_t} q_b$

Efficiency: GiPH finds better placement within fewer steps -+- Placeto Adaptivity: As the device network changes, GiPH maintains stable performance

- GiPH vs. RNN-Placer from HDP [1]: GiPH adapts to new device clusters, while the RNN-placer needs to be retrained
- *GiPH vs. Placeto [2]*: GiPH identifies critical tasks and adjust their placements more frequently during the search, while Placeto updates each task placement equally for exactly once

Case Study: Cooperative Sensor fusion

- Autonomous driving with roadside units (RSUs), infrastructure (IS) cameras, and CAVs
- Relocation overhead (data migration/initialization) measured in real-world deployment
- Realistic application trace simulated using Simulation of Urban MObility (SUMO)

Real-world deployment. Type A: Jetson Nano. Type B: Jetson TX2. Type C: Core i7 7700K with GTX 1080.

SLR

References

[1] A. Mirhoseini, A. Goldie et al (2018). "A Hierarchical Model for Device Placement." International Conference on Learning Representations.

[2] R. Addanki, S. B. Venkatakrishnan et al. (2019). "Placeto: learning generalizable device placement algorithms for distributed machine learning." Proceedings of the 33rd International Conference on Neural Information Processing Systems.