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gpNet Representation

An efficient graph representation to encode information
⬛ Each node corresponds to one action
⬛ Local graph structure corresponds to an alternative task 

placement
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Action space

GiPH: Generalizable Placement Learning for Adaptive 
Heterogeneous Computing

Introduction
In heterogeneous computing systems, careful choice of which parts of the
application to run on which device can significantly affect latency, e.g.,
compute-intensive tasks should be run on devices with more computation
resources. The key placement challenges are:

• Diverse compute/communication capabilities

• Volatile: devices can become unavailable/new devices enter the system

• Heterogeneous functions or types (CPUs/GPUs/sensors)

We propose GiPH, a reinforcement learning-based approach to learning
placement policies that can adapt to dynamic device networks.

GiPH

Placement in Heterogeneous Computing

Task graph 𝑮 (directed acyclic graph)
• Defines a distributed application
• Nodes 𝑽: computation/sensing tasks of different workloads/requirements
• Edges 𝑬: communication and inter-task dependency

Target computing network 𝑵
• Defines a cluster of interconnected devices
• Devices 𝑫: the set of devices with different compute/communication 

capabilities
• Each task 𝑣! can only be mapped to a subset of devices 𝐷! ⊆ 𝐷

Placement problem
• A mapping from the set of tasks to the set of devices

ℳ"→$: 𝑉 → 𝐷
• Objective min 𝜌 ℳ 𝐺,𝑁 𝑠. 𝑡.ℳ 𝑣! ∈ 𝐷!

Makespan minimization (critical for time-sensitive applications)
• Makespan: the time duration from the start of the first task’s execution to 

the end of the last task’s execution (i.e., completion time)
• Equal to the total communication and computation cost along the critical 

path
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Placement Problem

     A compute application G (DAG)

The set of tasks V

   with placement constraints     

  
Placement   
Objective  min

     A target computing network N

The set of devices D

  

G N

gpNet: a graph representation to efficiently encode information
• Each node corresponds to one action
• Local graph structure of 𝑎! = 𝑣" , 𝑑# corresponds to 𝑣! being re-placed to 𝑑/
Graph Neural Network: calculates embedding for each action
• Embed the placement information as a set of vectors 
• Message passing: 𝑒0 = ℎ1 ∑2∈3 0 ℎ4 𝑒2||𝑥025 + 𝑥06

Policy Network: decides an action (i.e., relocating a task) to take
• Learnable score function: 𝑞7 = 𝑔 𝑒7
• Softmax action selection: 𝜋 𝑎 𝑠 = 𝑞7/∑8∈9$ 𝑞8
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We formulate the placement problem as a search problem, where 
incremental changes are made to the current placement
Current placement (current state) à relocate one of the tasks (action) 

à transition to the updated placement (next state)

Markov Decision Process (MDP) formulation

State Space: the set of all feasible placement
Action Space: the set of all task and device pair that satisfies constraints
• 𝑎! = 𝑣" , 𝑑# : place 𝑣" on 𝑑#
Reward: the performance improvement   𝑟! = 𝜌 𝑠!%& 𝐺,𝑁 − 𝜌 𝑠! 𝐺,𝑁

Learning Framework

gpNet example

(w/ retraining)

Efficiency: GiPH finds better placement within fewer steps
Adaptivity: As the device network changes, GiPH maintains stable 
performance
• GiPH vs. RNN-Placer from HDP [1]: GiPH adapts to new device 

clusters, while the RNN-placer needs to be retrained
• GiPH vs. Placeto [2]: GiPH identifies critical tasks and adjust their 

placements more frequently during the search, while Placeto updates 
each task placement equally for exactly once

Case Study: Cooperative Sensor fusion

• Autonomous driving with roadside 
units (RSUs), infrastructure (IS) 
cameras, and CAVs

• Relocation overhead (data 
migration/initialization) measured in 
real-world deployment

• Realistic application trace simulated 
using Simulation of Urban MObility
(SUMO)

Real-world deployment. Type A: Jetson Nano. Type B: 
Jetson TX2. Type C: Core i7 7700K with GTX 1080.


