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Abstract

Our study explores and evaluates the application of unsupervised learn-
ing for identifying phase transitions in different lattice spin systems, with a
focus on the principal component analysis (PCA). The phase transitions of
the Ising model and the Potts models with 2, 3, 5, and 10 states in 2D are
studied in terms of lattice size and sample space for temperatures. I success-
fully identified the phase transition temperature using PCA by analyzing the
explained variance ratios and lower-dimensional projections.
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Chapter 1

Introduction

1.1 Historical Overview

The critical behavior at an order-disorder phase transition has been a central
interest in research of statistical physics and condensed matter physics. The
research is facilitated by a large variety of mathematical models that have
been introduced for real life experiments and theoretical modeling. Specif-
ically, the classical Ising and Potts models, which belong to a smaller class
of lattice models, have been found useful to model various phenomena and
objects, including ferromagnetic materials and lattice gas.

The Ising model provides the archetypal example of the lattice spin mod-
els, for which spins take value of +1. As probably the single most commonly
studied mathematical model of ferromagnetic in statistical mechanics, it has
long played an important rule in the research of phase transitions and criti-
cal phenomena. The model allows the identification of the phase transition,
which is one of the central topics of condensed matter physics research. Ini-
tially suggested by Wilhelm Lenz in 1920 to find the Curie’s temperature,
the model was solved in one dimension by his PhD student Ernst Ising in
1924. His analysis showed there was no phase transition to a ferromagnetic
ordered state at any temperature in one dimension[6]. In 1941 Kramers and
Wannier obtained the first exact quantitative result for the two-dimensional
Ising model[4]. But Ising model in three dimension remains insoluble.

The Potts model is a generalization of the Ising model to more-than-two
states, and was first proposed by Ranfrey Potts in 1951. Historically, a four-
state version of the model was studied by Ashkin and Teller in 1943, but the
model of general g states failed to catch much attention in its early years. In
the past few decades however, there has been an increasing interest in the
model, mainly because it has proven to be related to a variety of outstanding
problems in lattice statistics; the critical behaviors of the model also have
appeared to be more general and richer than that of Ising model[13].

In the ensuing efforts to explore the properties of these lattice spin models,
many techniques have been borrowed from different fields of mathematics
and statistics, such as Probability Theory and Combinatorics, and they have
contributed to a more elaborated description of possible critical behaviours
for the models. A group of Monte Carlo simulation methods has provided
precise values for the critical temperature and critical exponents[6]. Mean-
while, new methods are required since the exponentially large space usually
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makes calculations formidable for conventional approaches. There has been
an effort to incorporate machine learning into the study of the many-body
configurations. For example, convolutional-neural-network (CNN) in com-
bination with quantum Monte Carlo (QMC) simulations has proven to be
able to detect and characterize both continuous and discontinuous quantum
phase transitions [14][5]. Because machine learning is adept at processing
big data intelligently, it provides novel avenues to distill critical phase infor-
mation and classify phases for condensed matter. This thesis focuses on an
unsupervised learning method proposed by Lei Wang in [10] and the applica-
tion of this method to study the system characteristics and phase transitions
for Ising and Potts models.

1.2 Motivation and Research Objectives

As one of the central topics in the research of condensed matter physics, clas-
sifying phases of matter captures a lot of research attention in recent years.
While the state of a system with large number of constituting particles is
often sufficiently represented by only a few variables given the symmetry
and degree of freedoms of the system, the identification of phases and phase
transitions still becomes increasingly difficult as the number of new states
increases. The difficulty comes from the fact that with more and more states,
the order parameter used for labeling phases of matter may only be defined
in an elusive way/[11]. Therefore, new techniques to identify phases of matter
and phase transitions are needed to meet the challenge.

Machine learning allows us to extract phase information directly from
many-body configurations. As a burgeoning field, machine learning is widely
adopted in different areas. While the application of supervised learning
(e.g. regression and classification) to condensed matter physics has already
successfully predicted crystal structures, approximated density functionals,
and classified phases of statistic models[10], such methods by nature have a
drawback: they require a set of existing training data and a training phase be-
fore making predictions. On the other hand, unsupervised learning requires
no training phase. It is a group of self-taught methods that by themselves
identify the relationships between data elements and classify the raw data.
Even though unsupervised learning cannot be used to make predictions, the
fact that it is not necessary for unsupervised learning to assume the phase
transition exists makes it a preferred technique over the supervised learning
for identifying phase transitions.

The research objective of the thesis is to explore and evaluate the appli-
cation of the unsupervised learning technique, specifically principal compo-
nent analysis, to phase transition identification for 2D Ising and Potts models.
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1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2| we introduce the Ising and
Potts models, define the order parameter of the system and the spin corre-
lation, and also discuss the phase transition temperature. In Chapter 3 we
explain in detail the general procedure for using the unsupervised machine
learning techniques to identify the phase transitions. Specifically, Wolff al-
gorithm for sample generation and principal component analysis (PCA) for
feature extraction are studied and explained. Chapter [4 offers the simulation
results together with analyses that successfully identify the phase transitions.
Chapter [5|concludes the thesis and provides our view for future work.



Chapter 2

Background: Theory

2.1 Spin Systems

Spin systems are random collections of spin variables assigned to the vertices
of a lattice. The prototypical example of such a model is the Ising model, for
which spins take value 1. The Potts model is a generalization of the Ising
model to contain more than two possible states for each vertex.

2.1.1 Ising Model

The Ising model is a mathematical model in statistical mechanics originally
used to study the behavior of magnetic particles in a magnetic field. The
model consists of a collection of “spins” on lattice sites (an example of two-
dimensional Ising model is shown in Figl.1). Each spin ojtakes only the
value of +1 (up) or —1 (down). The Hamiltonian # of a given spin configu-
ration {0;} is

H=—] ) oi-0j—h)_ o 2.1)

<ij> i

where (i, j) denotes the nearest-neighbor pairs, ] is the interaction constant,
and £ is the external magnetic field. Note that the nearest-neighbor inter-
action is called ferromagnetic if | > 0, anti-ferromagnetic if | < 0, and the
spins are non-interacting if ] = 0. In other words, spins desire to be aligned
in a ferromagnetic Ising model, and tend to have opposite signs in an anti-
ferromagnetic model. Similarly, & > 0 if the spins tend to line up with the
external field in the positive direction, i < 0 if the spins tend to line up in
the negative direction, and h = 0 if there is no external field influence on the
spin sites[8]. We define the dimensionless energy E as

E=) 0;- 0 (2.2)
(i)
and the dimensionless magnetization M as

M=) o (2.3)

The Hamiltonian can thus be expressed as

H = —JE — hM. (2.4)
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In most cases, we assume there is no external magnetic field and set 1 = 0.
If we add the temperature dependence to the equation and define B =
1/kgT, K = J/kgT, where kg is the Boltzmann constant and T is the tem-
perature, the Hamiltonian thus becomes

—BrH =KE=KY_0;-0;. (2.5)
(i,j)

The partition function of the Ising model with only nearest-neighbour
interactions can be written as

Z=Y exp(—PrH)=)_exp KZ:UZ 7;). (2.6)
{o;} {oi}

| 4

//// /

Vsl

FIGURE 2.1: 2-D Ising Model

2.1.2 Potts Model

The Potts model is another lattice model of interacting spins derived from the
Ising model. A g-state Potts model allows spins to take on a complex vector
equally-spaced around the unit circle[13]

o, =exp (i2nn/q), n=0,1,..q—1 (2.7)

The standard Potts model was suggested by Potts with a Hamiltonian H
for a given configuration {c;} to be

— BrH =KE (2.8)
where the dimensionless energy E is defined as

E=Y6(c;0j). (2.9)
(L)

4(0;, 0j) is the Kronecker delta; it equals one whenever 0; = ¢; and zero
otherwise.
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The partition function of an ordinary Potts model with g-valued spins
considering only the nearest-neighbour interactions can be written as

Z=Y exp(—PrH)=)_exp (K Z 6(0i, 0 ) (2.10)
{oi} {oi}

2.1.3 Order Parameter and Correlation Function

The order parameter describes the average spin state in the system and is
defined as the vector mean of all individual spins[7]

(M) _ (Lioi)

m =gt = =t = (o) (2.11)

where N is the total number of sites, or the lattice size. For completely uncor-
related systems, the order parameter will evaluate to 0 since the phase factors
from the uncorrelated states will cancel.

From the coupling in the Hamiltonian, the correlation (o;0;) between neigh-
boring spins for a g-state Potts model is[13]:

Np

1 1
o) = L (@) =) 12)

where the sum is over neighboring spins. N, denotes the number of near-
est interacting spins for a single site. For a completely correlated system,
the probability of having the same spin value with the nearest spins is 1/4.
Therefore, the expectation value of the delta function is 1/4 and the correla-
tion will evaluate to zero. For a completely correlated system the expectation
of the delta function will be 1, and the value in the sum will evaluate to

Nplg=1) , giving the correlation a value of 1.

We expect Eq.(2.12) works properly for Ising model if g = 2. In that case,
o; = {—1,1} for both the Potts and the Ising models, and we have 0; - 0; =

26(0;,07) — 1. Eq.(2.12) becomes

Np

(017) = o Y (6(03,07) — 3) = 3~ L (28(05,07) = 1) = 1 ) 03+

P o,0; P oy,0; P oi,0;
(2.13)

which is the spin correlation for the Ising model. Therefore, Eq.(2.12) holds
in the Ising limit.

2.2 Phase Transition

In two dimensions, the critical temperature for Ising model has been found
to be[2]

kT) 1 2

te - 2 (2.14)
J Ki  In(1++2)
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where T/ is the critical temperature for Ising model and K; = % And for a

g-state Potts model the critical temperature T! satisfies[13]

kTP 1 1
€ = = 2.1
] Kp In(1+.,7) 215)

/
kT

The order parameter and correlation of the system will drop sharply as
the temperature approaches from below the critical temperature.

Note that although the Potts model is supposed to be a generalized ver-
sion of Ising model, the two models are not exactly equivalent when q = 2.
There is a small caveat: since anti-parallel spin pairs give different values
of interaction energy for the two models (c;,0; = —1 for Ising model but
4(0j,07) = 0 for 2-state Potts model), the critical temperature scales corre-
spondingly and gives the relation

where Kp =

2.3 Summary

| Model | Ising Potts

|

Order parameter

|
Partition function Y(oy exp (K Y34 0i - 0) \ Yoy exp (K Y5 0(0i, 07))
o)

. . N, N,
Correlation function q%lNLp Yo 0 (8(0i, 0) — %) NLP Zafoj 0; - 0j
Phase transition Ki=In(1++2)/2 Kp=In(1+,/9)

TABLE 2.1: Summary
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Background: Methodology

The general procedure of applying unsupervised learning to find the phase
transitions is to (1) generate a number of uncorrelated spin configuration
samples at different temperatures as input data using Monte Carlo simu-
lation, (2) use dimension reduction techniques to extract essential features
from the data matrix and find a low-dimensional representation, and (3) ap-
ply cluster analysis algorithms to the dimension-reduced data to find clusters
of data representing different phases[10].

In this chapter, Section explains the Monte Carlo simulation tech-
niques used for configuration generation, with special focus on Wolf algo-
rithm. Section |3.2|introduces the unsupervised learning, the principal com-
ponent analysis (PCA), for dimensionality reduction.

3.1 Monte Carlo Simulation

Monte Carlo simulation is a computerized mathematical technique that pro-
duces a series of random sampling. There are two basic sampling techniques:
direct sampling and Markov Chain sampling. In the direct sampling, the
samples are taken independently for each step by choosing a random site
on the space; therefore, later samples are independent of the previous ones.
However, in the Markov Chain Monte Carlo (MCMC), the next sample de-
pends on the current one. The sampling starts at a given initial state or where
the last simulation ends. Then, from the initial state, we move in a random
direction to a new state with a distance limited to a predetermined value 0.
Finally, we decide whether to remain in the new state based on the accep-
tance rate calculated at the new site.

Direct sampling is practically impossible for large configuration spaces.
For MCMC, the most general implementation of this procedure is Metropo-
lis algorithm, also known as Metropolis-Hastings algorithm. To apply this
method to generating random 2-D spin configurations, a vertex is selected
randomly to change its spin. The new system configuration will be accepted
if the change reduces the total free energy of the system, or conditionally
accepted to a higher energy by a Boltzmann factor. In other words, if the
current system configuration y and the new one v satisty H, < H,, the new
system configuration is always accepted and replaces the current configura-
tion; if H, > H,, the new configuration is accepted with an acceptance rate

Alp — v) = e’ﬁT(HV’Hﬂ)[C’)][S]. However, the performance of Metropolis
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algorithm suffers as the temperature approaches the critical temperature. A
lot of Markov Chain steps are required to obtain two uncorrelated configu-
ration samples because the correlation length diverges and there are critical
fluctuations near phase transition.

Wolf Algorithm

The Wollff algorithm is a cluster algorithm that involves flipping large groups
of spins simultaneously. Proposed by Wolff[12], this method gets rid of the
critical slowing down of the Metropolis algorithm by flipping the whole clus-
ter quickly, as opposed to relying on random reassignment of adjacent sites
with large correlation. Baillie in [1] compared the performance of different
cluster algorithms for two-dimensional Potts model and found Wolf algo-
rithm converge efficiently. Therefore, Wolf cluster algorithm is chosen for
the Monte Carlo simulation of sample configurations for this project. See
Appendix B for explanation and a detailed implementation scheme of the
cluster Wolf algorithm for Ising and Potts models.

3.2 Unsupervised Learning

3.2.1 Feature Extraction
Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used for di-
mensionality reduction. It uses orthogonal transformation to convert vec-
tors into linear combinations of a set of mutually orthogonal vectors called
principal components. Along the directions of these components the vari-
ances of the data decrease monotonically. The orthogonal transformation is
a linear transformation of the original coordinates Y = XW. X with dimen-
sions n x m is the original data matrix where there are n data entries as row
vectors. W = (wq, wp, ..., wn) is called vectors of weights composed of col-
umn vectors w; that represent the weights of the principal components in the
configuration space. Each vector of weights can be obtained by solving the
eigenproblem

XTXw; = Ajw, (3.1)

where A, is the I eigenvalue of XTX sorted in a descending order and wj is
the corresponding eigenvector. The explained variance ratio is the normal-
ized eigenvalue defined as A; = A;/ ¥; A;.
The projected coordinates y; of the I dimension in the configuration
space can be obtained:
Y = le. (32)
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Chapter 4

Simulation and Results

4.1 Sample generation and procedures

We implement the unsupervised learning technique described in Chapter
and conduct five experiments respectively for the Ising model and the Potts
model with g = 2,3,5 and 10.

During each experiment, a number of temperatures near the theoretical
critical temperature are chosen and calculated for fr and 1/K. For each of
the five models, three sets of temperatures shown in Table are used
to identify how the choice of temperature sets influences the unsupervised
learning results. Temperature set 2 adds four higher temperatures for each
model to those in temperature set 1, and temperature set 3 adds four lower
temperatures to those in temperature set 1.

100 uncorrelated spin configurations are generated at each temperature
and collected into a M x N matrix X, where M equals 100 xnumber of tem-
peratures and N equals the total number of spins. Every 100 rows of the data
use the same temperature. Values of 402, 802, 1202, and 1602 are used for N
to see how the system size will influence the simulation results.

We mainly focus on analyzing the explained variance ratios and the ma-
trix projection on the first two principal components, as will be discussed in
Section 4.2.1|and §.2.2| respectively. The supporting results of simulation un-
der temperature set 2 and 3 for the five models that are not included in this
chapter can be found in Appendix

i 012 013 ... OIN
02,1 02,2 023 ... O2N
X — : : : . : 4.1)
01001 01002 01003 -~ OU100,N
oM1 OM2 OM3 - OMN/ pxN

42 PCA

After sample generation, we need to extract features from the matrix X by
applying PCA. As mentioned in Chapter 3| this step does not assume the ex-
istence of the phase transition as most supervised learning methods do, and
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|

Model

kgT/]J(=1/K)

Ising
2-state Potts
3-state Potts
5-state Potts

10-state Potts

2.1,2.15,2.2,2.25,...,2.5,2.55
1.0,1.05,1.1,1.15,...,1.4,1.45
0.7,0.75,0.8,0.85, ...,1.1,1.15
0.6,0.65,0.7,0.75, ...,1.05,1.1

0.6,0.65,0.7,0.75, ...,1.05,1.1

TABLE 4.1: Temperature set 1

|

Model

H

kgT/](=1/K)

Ising
2-state Potts
3-state Potts
5-state Potts

10-state Potts

2.1,2.15,2.2,2.25,...,2.7,2.75
1.0,1.05,1.1,1.15,...,1.6,1.65
0.7,0.75,0.8,0.85, ...,1.3,1.35
0.6,0.65,0.7,0.75, ...,1.25,1.3

0.6,0.65,0.7,0.75, ...,1.25,1.3

TABLE 4.2: Temperature set 2

|

Model

H

kgT/](=1/K)

Ising
2-state Potts
3-state Potts
5-state Potts

10-state Potts

1.9,1.95,2.0,2.05,...,2.5,2.55
0.8,0.85,0.9,0.95,...,14,1.45
0.5,0.55,0.6,0.65,...,1.1,1.15
0.4,0.45,0.5,0.55,...,1.05,1.1

0.4,0.45,0.5,0.55, ...,1.05,1.1

the input matrix X is the only data we need for performing the unsupervised
learning. Our knowledge about the critical temperature of the models is used

for verification only.

TABLE 4.3: Temperature set 3
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10° 10°

—o— N=402 —o— N=402
N =802

1073 T T T T T T T T 1073

(a) Ising Model (b) 2-state Potts Model

10°

—— N=40?

(c) 3-state Potts Model (d) 5-state Potts Model

—— N=40?
N =80?

(e) 10-state Potts Model

FIGURE 4.1: The first ten explained variance ratios under tem-
perature set 1 for the Ising and Potts models.



Chapter 4. Simulation and Results 13

10° 10°

—o— N=402 —e— N=402

N =802
—— N=1202
—o— N=1602

i i

(a) Ising Model (b) 2-state Potts Model

—o— N=402 —o— N=402

1073 1073
2 4 6 8 10 12 14 2 4 6 8 10 12 14

i i

(c) 3-state Potts Model (d) 5-state Potts Model

10°
—— N=402

N =807
—— N=1202
—o— N=160?
10!

1072

1073

(e) 10-state Potts Model

FIGURE 4.2: The first fifteen explained variance ratios under
temperature set 2 for the Ising and Potts models.

4.2.1 Explained variance ratio

When keeping only the first few principal components, PCA is an effective
dimension reduction approach which captures most variations of the orig-
inal data. The first ten explained variance ratios under temperature set 1
and the first fifteen explained variance ratios under temperature set 2 for the
Ising model and the four Potts models of interest are shown in Figlt.1] and
respectively. All the plots show that there is only one dominant princi-
pal component and it is the case for all five models. Since the temperature is
the only variable when generating configuration samples, the first principal
component indicates the direction along which the spin systems vary most
significantly as the temperature changes.



Chapter 4. Simulation and Results 14

We can also see from Figi4.T| and Figl.2] that for Potts model, as g in-
creases, there is also an increase in the explained variance ratios of the prin-
cipal components after the first one. Notably, when the lattice size is large
enough, the plots show a nearly flat region with similar variance ratios for
a number of components. This region has variance ratios much lower than
the variance ratio of the first component, but significantly greater than those
of the later ones. If we compare Figld.T|and Fig[4.2} the flat region is found
to be influenced by the temperature set used for generating the input matrix.
Under temperature set 2 with four higher temperature values added to tem-
perature set 1, we get a longer flat region for 5- and 10-state Potts models,
and also a tendency of forming the flat region for 2- and 3-state Potts models
as shown in Figi4.2(b) and 4.2(c), The length of the flat region is positively
related to the number of high temperatures used.

4.2.2 Low-Dimensional Projection

Following Eq.(3.2) we project the samples onto the space spanned by the first
two principal components. The projections for the Ising model and 2- and
3-state Potts models using temperature set 1 are shown in Fig respec-
tively, where the panels (a-d) are for N = 407, 80%, 1202, and 160 sites. As
expected, the plots show the variation along the first principal axis y1 is much
stronger than that along the second principal axis y».

As the lattice size increases, we can see all the data points have the ten-
dency to split into three clusters along the first principal axis. At low temper-
atures, the samples lie symmetrically at finite y;, while at high temperatures,
they mainly locate around the origin. During the phase transition when the
temperature is around the critical one, the samples spread broadly along y;
axis because of large fluctuations. One also observes that the samples also
tend to split into clusters along the second principal axis vy, as the system
size grows. After the sample points converge to the origin horizontally, they
move away vertically from the origin as temperature increases.

We calculate the simulated expectation value of |y;| and y, with variance
as a function of temperature in temperature set 1, 2 and 3. The results are
shown in Figl.6[{4.10, Fig/A.4{A 8 and Fig/A.13[{A.17) respectively, together
with the theoretical critical temperature for each system noted. During the
phase transition, we expect |y1| to drop drastically to zero with large fluctu-
ations. We can estimate the phase transition temperatures by looking for a

| Model || Identified phase transition temperature | Theoretical T |
Ising 225-23 2.27
2-state Potts 1.1-1.15 1.13
3-state Potts 0.95-1.0 0.99
5-state Potts 0.85—-0.9 0.85
10-state Potts 0.7—-0.75 0.7

TABLE 4.4: Identified phase transition temperature with PCA.
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temperature range where there is a sudden drop in |y;| with large data vari-
ance. All plots of Figld.6(a)l{4.10(a)| Fig/A.4(a){A.8(a) and FiglA.13(a){A.17(a)|
are indeed as expected, and even with different temperature sets, the plots
give similar estimation of the temperature of phase transitions for the five
models. Table 4.4 summarizes the simulated phase transition temperatures
and theoretical true values for different systems. Our identified possible
ranges for phase transitions nicely agree with theoretical values.

When looking at i, axis from Fig[4.6(b){4.10(b), Fig/A.4(b){A.8(b)|and Fig.
[A.13(b){A.T7(b)| one observes that the five systems uniformly remain indif-
ferent to the temperature change along the second principal axis before the
phase transitions. However, as the temperature increases, samples start re-
acting to the temperature change. While the starting points of the reaction
vary from case to case depending on the model type, the temperature set
and the system size, the plots all show oscillation in y, at high temperatures
after the phase transition predicted by |y1|. Such oscillation in the second
principal axis ¥, can be best explained as the statistical compensation for the
near-zero values of y; and for the intrinsic asymmetry of the input matrix.
However, the starting point of reaction of y, axis alone does give a good esti-
mation of the upper limit for the critical temperature.
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Chapter 5

Conclusion

5.1 Summary and Conclusion

Both the Ising model and the Potts model have wide applicability to many
systems of statistical physics and condensed mass physics, and have close
connection to natural phase transitions. In this project, we successfully iden-
tify the phase transitions of the Ising model and the Potts model with g =
2,3,5 and 10 using unsupervised learning. The general procedure is to first
generate configuration samples under a set of temperatures and put them
into a matrix, and then apply PCA to the sample matrix. PCA is able to ex-
tract features of the input and reduce it to lower dimensions without losing
salient information. By looking at the matrix’s projection along the first prin-
cipal axis, we can discover the phase transitions.

We successfully use this unsupervised learning scheme to pinpoint a small
temperature range where the phase transition happens for each model. The
range can be further narrowed down by using temperatures that are closer
together for sample generation. A qualitative value can also be obtained by
doing cluster analysis of the sample projections, but it is outside of the scope
of this project.

Along the first principal axis, larger systems show not only a more sudden
value shift but also greater fluctuations during the phase transition. Mean-
while, there is also symmetry about the origin, suggestive of a deeper mathe-
matical framework behind those models. On the other hand, the asymmetry
along the second principal axis is found to be related to the temperature set
for sample generation and the intrinsic asymmetry in samples.

5.2 Future Work

Although with the unsupervised learning scheme we are able to identify and
analysis the dominant collective phases of the system related to the phase
transition in two dimensions for Ising and Potts model, simple PCA can only
identify relations that are linear. Therefore, future work can focus on the
identification of nonlinear phase transitions. Some interesting and promising
directions are the application of kernel techniques or neural-network based
analysis.
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While the successful identification of phase transitions using PCA is rather
encouraging given how simple the method is, it still lacks the level of ac-
curacy that can be obtained by conventional Monte Carlo simulation tech-
niques. Improvement can be done by incorporating cluster analysis that is
able to identify those overlapping phases.
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Appendix B

Wolf Cluster Algorithm

B.1 For Ising Model

From Fortuin-Kasteleyn representation, the partition function for the Ising
model can be written as[7]]

Z = exp (K Z (T,Uj)
{oi} (i.j)

_ {Uz} <1;[>ef<[(1 — p) + pd(oy,0j)] (B.1)

= Y Y TTeM = p)é(nij, 0) + ps (o3, 07)6(n4, 1))
{oi} {ni;} (if)

with
P = 1 —_ e_ZK, (B.Z)

where n;; are assigned a value of 0 for inactive bonds and 1 for active bonds.
Equ.(B.1) gives an effective parameterization of the partition function in
terms of clusters, and it leads to the cluster simulation algorithm[9]:

1. Choose a random seed site and flip the spin ¢; to —0;.

2. Find all neighboring spins that match the original seed spin and add
them to cluster with probability p.

3. If a spin is added to cluster, flip the spin to new spin. Check that spin’s
neighbors and repeat procedure 2.

4. One step is complete once all spins have been checked.

5. Repeat until convergence.

import numpy as np
from numpy.random import rand

def wolffStep (S, beta):

N = len(S)
padd = 1-np.exp(—2xbeta)
stack = []

a = np.random.randint (N)
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def

b = np.random.randint (N)
oldS = S[a,b]

newS = —oldS

stack .append (a+xN+b)
S[a,b] = newS

while (len(stack) !=
cur = stack.pop()
a = cur//N
b = cur%N

0):

al = a+1 if a<N-1 else O
a2 = a—1 if a>0 else N-1
bl = b+1 if b<N-1 else 0
b2 = b—1 if b>0 else N-1

if (S[al,b]==0ldS and rand()<padd):

stack .append (al*N+b)
S[al,b] = newS

if (S[a2,b]==0ldS and rand()<padd):

stack .append (a2+N+b)
S[a2,b] = newS

if (S[a,bl]==0ldS and rand()<padd):

stack .append (a*N+b1)
S[a,bl] = newS

if (S[a,b2]==01ldS and rand()<padd):

stack .append (a*N+b2)
S[a,b2] = newS
return S

wolff (S, beta, stepN):
for i in range (stepN):

S = wolffStep (S, beta)
return S

def genSample(L, NS, T):

r = np.zeros ((NSxlen(T), LxL))
for i in range(len(T)):
t = T[i]
beta = 1.0/t
S = np.ones((L,L))
S = wolff(S, beta, 500)
for j in range(NS):
S = wolff(S, beta, 30)
r[i*NS+j, :] = S.flatten ()
return r
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B.2 For Potts Model

From Fortuin-Kasteleyn representation, the partition function for Potts model
can be written as[7]

Z =Y exp(K)_ 6(c,0)

{oi} (i.j)
= ZHEK[(l_P)+p5(Ui/0}')] (B 3)
{oi} (i) )
= ¥ % TTeM1 = p)(ng,0) + po(er, )0y 1)
{oi} {nij} (i)

This time, p =1 — e~ K. The cluster simulation algorithm is[1][9]:
1. Choose a random seed site and change the spin to a random new spin.

2. Find all neighboring spins that match the original seed spin and add
them to cluster with probability p.

3. If a spin is added to cluster, flip the spin to the new spin. Check that
spin’s neighbors and repeat procedure 2.

4. One step is complete once all spins have been checked.

5. Repeat until convergence.

import numpy as np
from numpy.random import rand

def wolffStep (S, beta, q):

N = len(S)
padd = 1-np.exp(—beta)
stack = []

a = np.random.randint (N)
b = np.random.randint (N)
oldS = S[a,b]
newS = (oldS+np.random.randint(1,q))
if (newS>=q):
newS —=q;
stack .append (a*N+b)
S[a,b] = newS

while (len(stack) != 0):
cur = stack.pop()

a = cur//N
b = cur%N
al = a+1 if a<N-1 else 0

a2 = a—1 if a>0 else N-1
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def

def

bl = b+1 if b<N-1 else 0
b2 b—1 if b>0 else N-1

if (S[al,b]==0ldS and rand()<padd):

stack .append (al+N+b)
S[al,b] = newS

if (S[a2,b]==0ldS and rand()<padd):

stack .append (a2+N+b)
S[a2,b] = newS

if (S[a,bl]==0ldS and rand()<padd):

stack .append (a*N+b1l)
S[a,bl] = newS

if (S[a,b2]==0ldS and rand()<padd):

stack .append (a*N+b2)
S[a,b2] = newS
return S

wolff (S, beta, stepN, q):
for i in range (stepN):

S = wolffStep (S, beta, q)
return S

genSample(L, NS, T, q):
r = np.zeros ((NSxlen(T), LxL))
for i in range(len(T)):
t = T[i]
beta = 1.0/t
S = np.zeros((L,L))
S = wolff(S, beta, 500, q)
for j in range(NS):
S = wolff(S, beta, 30,q)
r[i*NS+j, :] = S.flatten ()
return r
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