PDE + ML papers

1 minute read

Published:

PDE applications

Neural Operators (on function space)

  • DeepONet
    branch net for input function (with fixed input location) and Trunk net at target locations paper
  • Neural Operators (link)
    • Graph kernel network
      paper: uniform mesh (graph message passing), ‘decompose’ a target spatial function
    • Multipole graph kernel network
      paper (NIPS 2020): hierarchical graph kernels
    • Fourier neural operator
      paper (ICLR 2021): fourier decomposition
    • Geo-FNO
      paper: FNO on arbitrary geometries
    • Markov neural operator
      paper (NIPS 2022): sequential and dissipative systems; learning global attractor

PDE Solvers (ivp/bvp)

Physics-informed neural networks

  • PINN
    paper: define loss to specify constraints

Linear regression

  • PDE solver with convergence guarentees
    original paper (ICLR 2019)
    • PDE class: Poisson (laplacian) $\nabla^2 u = f$
      • elements: linear $Au = f$, f, boundary B, boundary condition b, discretization n
      • fixed: A
      • vary: f, B, b, n
  • Multigrid PDE solver
    original paper
    • PDE class: diffusion $\nabla (\mathbf{g}\nabla \mathbf{u}) = \mathbf{f}$
      • elements: linear $Au=f$, f, boundary B, boundary condition b, discretization n
      • vary: b, n, f(?)
  • Message-passing neural PDE (MP-PDE)
    original paper (ICLR 2022)

Physical Systems

Spatiotemporal Dynamics

  • Kinetics

  • Hamiltonian Neural Networks (HNN)
    Hamiltonian equation, paper (NIPS 2019)
    deconstructing the inductive biases of HNN, paper (ICLR 2022)
  • Symplectic RNN (SRNN)
    Hamiltonian Net with RNN as ODE solver, paper (ICLR 2020)
  • Deep Lagrangian Network (DeLaN)
    Lagrangian mechanical system, paper (ICLR 2019)
  • Lagrangian neural networks
    general coordinates, paper

Differential equation enabled neural networks

  • Neural ODE (NODE)
    neural function as the differential equation, paper (NIPS 2018)
  • Augmented NODEs
    augment space dimensions to improve expressiveness, paper (NIPS 2019)
  • Dissecting NODEs
    Continuous and variance depth parameter model, encoder/decoder (augmentation), data-control and depth-adaptation paper (NIPS 2020)
  • Second-order NODEs (SONODEs)
    A seperate function to learn the second order time derivative paper (NIPS 2020)
  • Characteristic NODE (C-NODE)
  • Graph NODEs (GDEs)
    GNN + NODE