Bayesian inverse problems
Published:
Notes from: Stuart, Andrew M. “Inverse problems: a Bayesian perspective.” Acta numerica 19 (2010): 451-559.
1. The Bayesian Framework
Bayesian Approaches
- Inverse Problem: determining $u$ from $y$ \(y = \mathcal{G}(u)\)
- $\mathcal{G}: X\rightarrow Y$ observation operation ($X$,$Y$ Banach)
- unknow input $u\in X$ (parameter)
- an observation $y\in Y$ of the solution of $\mathcal{G}$ (data)
- Regularized minimization: subspace $E\in X$, $m_0\in E$ \(\arg\min_{u\in E}\left(\frac{1}{2}\lVert y-\mathcal{G}(u)\rVert^2_Y + \frac{1}{2}\lVert u-m_0\rVert^2_E\right)\)
- Statistical Approach:
- find probability measure $\mu^y = P(u|y)$ on $X$
- observation with noise: $y = \mathcal{G}(u) + \eta, \mathbb{E}(\eta) = 0$
- posterior measure (e.g., Gaussian): \(\pi^y(u)\propto \exp\left(\frac{1}{2}\lVert y-\mathcal{G}(u)\rVert^2_Y + \frac{1}{2}\lVert u-m_0\rVert^2_E\right)\)
- Formally:
2. Applications